Kombucha: A systematic review and meta-analysis of experimental evidence of its effects on blood glucose, dyslipidemia and body weight in diabetes mellitus
,
DOI:
https://doi.org/10.33448/rsd-v11i6.29278Keywords:
Systematic review; Diabetes mellitus; Sugar-sweetened beverages; Functional food.Abstract
Kombucha is a non-alcoholic fermented tea-based beverage produced by a symbiotic culture of bacteria and yeast. This growing popularity in the United States and developed countries has been part of the functional food’s movement in the use of plant infusions as a promising alternative to the benefits of the microbiome in the treatment of obesity and diabetes. However, recent studies show controversial information about the effects of Kombucha on health, often driven by different theories leading to the empirical use of the drink without standardization of quantity and forms, and preparation, which can cause harm to human health. Given that, we carried out this systematic review to evaluate the effect of Kombucha on health through pre-clinical studies with scientific evidence available in the literature, to enable future studies in humans.
References
Afsharmanesh, M. & Sadaghi, B. (2014). Effects of dietary alternatives (probiotic, green tea powder, and Kombucha tea) as antimicrobial growth promoters on growth, ileal nutrient digestibility, blood parameters, and immune response of broiler chickens. Comp. Clin. Path. 23(3):717–24
Alkhatib, A. & Atcheson, R. (2017). Yerba Maté (Ilex paraguariensis) Metabolic, Satiety, and Mood State Effects at Rest and during Prolonged Exercise. Nutrients. 9(8):
Alkhatib, A., Tsang, C., Tiss, A., Bahorun, T., Arefanian, H., et al. (2017). Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients. 9(12):
Amarasinghe, H., Weerakkody, N.S., & Waisundara, V.Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during extended periods of fermentation. Food Sci. Nutr. 6(3):659–65
American Diabetes Association. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care. 37 Suppl 1:S81-90
Anagnostis, P., Katsiki, N., Adamidou, F., Athyros, V.G., Karagiannis, A., et al. (2013). 11beta-Hydroxysteroid dehydrogenase type 1 inhibitors: novel agents for the treatment of metabolic syndrome and obesity-related disorders? Metab. Clin. Exp. 62(1):21–33
Ansari, F., Pourjafar, H., Kangari, A., & Homayouni, A. (2019). Evaluation of the glucuronic acid production and antibacterial properties of kombucha black tea. Curr. Pharm. Biotechnol. 20(11):985–90
Bhattacharya, S., Gachhui, R., & Sil, P.C. (2013). Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food Chem. Toxicol. 60:328–40
Buczkowska, E. O. & Jarosz-Chobot P. (2001). [Insulin effect on metabolism in skeletal muscles and the role of muscles in regulation of glucose homeostasis]. Prz. Lek. 58(7–8):782–87
Dashti, M. H. & Morshedi, A. (2000). A Comparison between The Effect of Black Tea and Kombucha Tea on Blood Glucose Level in Diabetic Rat. Medic Journal of Islamic World Academy of Sciences. 13(2):83–7
Dimidi, E., Cox, S.R., Rossi, M., & Whelan, K. (2019). Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients. 11(8):
Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., & Raptis, S.A. (2011). Insulin effects in muscle and adipose tissue. Diabetes Res. Clin. Pract. 93 Suppl 1:S52-9
Ernst, E. (2003). Kombucha: a systematic review of the clinical evidence. Forsch Komplementarmed Klass Naturheilkd. 10(2):85–87
Grota A. J. de A..; Silva, D. C. da; Figueiredo, G. T. de O.; & Castro, R. da S.. (2021) Consultation and pharmaceutical diagnosis of Diabetes Mellitus type 2: a systematic review. Research, Society and Development, 10(14), e18110142208710.33448/rsd-v10i14.22087.
Hooijmans, C. R., Rovers, M. M., de Vries, R. B. M., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 14:43
Hosseini, S.A., Gorjian, M., Rasouli, L., Shirali, S. (2015). A Comparison between the Effect of Green Tea and Kombucha Prepared from Green Tea on the Weight of Diabetic Rat. Biosci., Biotechnol. Res. Asia. 12(SEMAR):141–46
Hosseini, S.A., Rasouli, L., Gorjian, M., & Yadollahpour, A. (2016). A comparative study of the effect of Kombuchaprepared from green and black teas on the level of blood glucose and lipidprofile of diabetic rats. International Journal of Pharmaceutical Research and Allied Sciences. 5(2):93–102
Johnston, K.L., Clifford, M.N., & Morgan, L.M. (2003). Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am. J. Clin. Nutr. 78(4):728–33
Kapp, J.M. & Sumner, W. (2019). Kombucha: a systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 30:66–70
Marinho, F. P.; Loyola, I. S.; Monteiro, I. de O. F.; Castro, T. M.; Carvalho, M. das G. de S.; Garcia, J. A. D.; Sivério, A. C. P.; & Santos, G. B. Interrelationship between COVID-19 and diabetes mellitus: a systematic review. Research, Society and Development, 10(2), e4810212191, 10.33448/rsd-v10i2.12191.
Martínez Leal, J., Valenzuela Suárez, L., Jayabalan, R., Huerta Oros, J., & Escalante-Aburto, A. (2018). A review on health benefits of kombucha nutritional compounds and metabolites. CyTA - Journal of Food. 16(1):390–99
Matsui, T., Ogunwande, I.A., Abesundara, K.J.M., & Matsumoto, K. (2006). Anti-hyperglycemic Potential of Natural Products. Mini Rev. Med. Chem. 6(3):349–56
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6(7):e1000097
Morshedi, A., Dashti, M.H., Mosaddegh, M.H., Rafati, A., & Salami, A.S. (2006). The chronic effectof Kombucha Tea consumption on weight loss in diabetic rats. J Herbs Spices Med Plants. 5(2):17–22
Oliveira, J.E.P., Montenegro Junior, R.M., & Vencio, S. (2017). Diretrizes Da Sociedade Brasileira de Diabetes2017-2018
Rodríguez-Ramiro, I., Ramos, S., Bravo, L., Goya, L., & Martín, M.Á. (2011). Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J. Nutr. Biochem. 22(12):1186–94
Ruiz-Ramos, M., Escolar-Pujolar, A., Mayoral-Sánchez, E., Corral-San Laureano, F., & Fernández-Fernández, I. (2006). [Diabetes mellitus in Spain: death rates, prevalence, impact, costs and inequalities]. Gac. Sanit. 20 Suppl 1:15–24
R Core Team. (2018). A language and environment for staticalcomputing. R Foundation for Statical Computing. www.R-project.org.
Saklayen, M.G. (2018). The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20(2):12
Song, F., Eastwood, A.J., Gilbody, S., Duley, L., & Sutton, A.J. (2000). Publication and related biases. Health Technol. Assess. 4(10):1–115
Srihari, T., Karthikesan, K., Ashokkumar, N., & Satyanarayana, U. (2013). Antihyperglycaemic efficacy of kombucha in streptozotocin-induced rats. J. Funct. Foods. 5(4):1794–1802
Sterne, J.A.C., Hernan, M.A., McAleenan, A., Reeves, B.C., & Higgins, J.P.T. (2019). Chapter 25: assessing risk of bias in a non-randomized study. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.0, eds. JPT Higgins, J Thomas, J Chandler, M Cumpston, T Li, et al. Hoboken: John Wiley & Sons
Tsang, C., Smail, N.F., Almoosawi, S., Davidson, I., & Al-Dujaili, E.A.S. (2012). Intake of polyphenol-rich pomegranate pure juice influences urinary glucocorticoids, blood pressure and homeostasis model assessment of insulin resistance in human volunteers. J. Nutr. Sci. 1:e9
Turner, R., Cull, C., & Holman, R. (1996). United Kingdom Prospective Diabetes Study 17: a 9-year update of a randomized, controlled trial on the effect of improved metabolic control on complications in non-insulin-dependent diabetes mellitus. Ann. Intern. Med. 124(1 Pt 2):136–45
Uțoiu, E., Matei, F., Toma, A., Diguță, C.F., Ștefan, L.M., et al. (2018). Bee Collected Pollen with Enhanced Health Benefits, Produced by Fermentation with a Kombucha Consortium. Nutrients. 10(10):
Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 36(3):
Yang, C.S., Wang, H., Li, G. X., Yang, Z., Guan, F. & Jin, H. (2011). Cancer prevention by tea: Evidence from laboratory studies. Pharmacol. Res. 64(2):113–22
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Marielle Malucelli Mallmann; Silvia Valderramas; Amanda Carvalho Garcia; Ricardo Rasmussen Petterle; Márcio Luís Duarte; Odery Ramos Junior
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.