Red pigment production by Amycolatopsis sp. UFPEDA 3422




Biopigment; Carbon source; Polyphasic taxonomy.


Red biopigments produced by actinobacteria represent an important substitute in the food industry to synthetic pigments, which can cause harmful effects on human health and the environment. In this study, pigment production by actinobacteria strain UFPEDA 3422, identified by polyphasic taxonomy, was investigated. The cultivation parameters related to growth and pigment production were assayed in solid culture media and submerged fermentation. The red cell pigment was extracted with ethyl acetate and analyzed in a UV-Vis spectrophotometer with maximum production of the pigment (34.9 AU540 nm) in Hickey-Tresner (HT) medium for 48 hours at 37 ºC. The maximum biomass concentration (33.4 g/L) was obtained after 96 hours. Polyphasic taxonomy confirms 97.4% similarity of strain UFPEDA 3422 with the Amycolatopsis, a rare genus able to produce pigments on different substrates. In addition, the microorganism has tolerance to temperature variations, pH fluctuations and concentrations of 5% NaCl. The determination of cultivation and pigment production parameters show the potential of Amycolatopsis sp. as an alternative source of natural pigments.


Abraham, J., & Chauhan, R. (2018). Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity. 3 Biotech, 8(1), 1-9.

Asnani, A., Ryandini, D., & Suwandri. (2016). Screening of Marine Actinomycetes from Segara Anakan for Natural Pigment and Hydrolytic Activities. IOP Conference Series: Materials Science and Engineering, 107(1), 0–9.

Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology, 45, 493–496.

Bauermeister, A., Calil, F. A., das CL Pinto, F., Medeiros, T. C., Almeida, L. C., Silva, L. J., de Melo, I. S., Zucchi, T. D., Costa-Lotufo, L. V., & Moraes, L. A. (2019). Pradimicin-IRD from Amycolatopsis sp. IRD-009 and its antimicrobial and cytotoxic activities. Natural product research, 33(12), 1713-1720,

Bühler, R. M. M., Dutra, A. C., Vendruscolo, F., Moritz, D. E., & Ninow, J. L. (2013). Monascus pigment production in bioreactor using a co-product of biodiesel as substrate. Ciência e Tecnologia de Alimentos, 33, 9–13.

Bühler, R. M. M., Müller, B. L., Moritz, D. E., Vendruscolo, F., de Oliveira, D., & Ninow, J. L. (2015). Influence of light intensity on growth and pigment production by Monascus ruber in submerged fermentation. Applied Biochemistry and Biotechnology, 176(5), 1277–1289.

Celedón, R. S., & Díaz, L. B. (2021). Natural Pigments of Bacterial Origin and Their Possible Biomedical Applications. Microorganisms, 9(4), 739.

Challis, G. L. (2014). Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. Journal of Industrial Microbiology and Biotechnology, 41(2), 219–232.

Chatragadda, R., & Dufossé, L. (2021). Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms, 9(3), 637.

Clinical and Laboratory Standards Institute (CLSI). (2017). Performance Standards for Antimicrobial Susceptibility Testing, 27th Edition. Clinical and Laboratory Standards Institute, Wayne, PA.

El-Naggar, N. E. A., & El-Ewasy, S. M. (2017). Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Scientific reports, 7(1), 1-19.

Elumalai, S., Santhose, B. I., & Kanna, G. R. (2014). Extraction of carotenoid and thin layer chromatography (TLC), GC-MS, FT-IR and HPLC analysis of pharmaceutically important pigment astaxanthin from a new strain of Haematococcus pluvialis. Weekly Science Research Journal, 2(8), 2321-7871. 2321-7871/1202013/53

Goodfellow, M., Kämpfer, P., Busse, H. J., Trujillo, M. E., Suzuki, K. I., Ludwig, W., & Whitman, W. B. (2012). Bergey's Manual® of Sistematic Bacteriology: Volume Five The Actinobacteria. (Part A). ISBN: 978-1-4939-7916-5, New York: Springer.

Gordon, R. E., Barnett, D. A., Handerhan, J. E., & Pang, C. H. (1974). Nocardia coeliaca, Nocardia autotrophica and the Nocardin Strain. International Journal of Systematic and Evolutionary Microbiology, 24, 54-63,

Heo, Y. M., Kim, K., Kwon, S. L., Na, J., Lee, H., Jang, S., & Kim, J. J. (2018). Investigation of filamentous fungi producing safe, functional water-soluble pigments. Mycobiology, 46(3), 269–277.

Jones, K. L. (1949). Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. Journal of bacteriology, 57(2), 141-145,

Keekan, K. K., Hallur, S., Modi, P. K., & Shastry, R. P. (2020). Antioxidant activity and role of culture condition in the optimization of red pigment production by Talaromyces purpureogenus KKP through response surface methodology. Current microbiology, 77(8), 1780-1789.

Koim-Puchowska, B., Kłosowski, G., Dróżdż-Afelt, J. M., Mikulski, D., & Zielińska, A. (2021). Influence of the medium composition and the culture conditions on surfactin biosynthesis by a native Bacillus subtilis natto BS19 strain. Molecules, 26(10), 2985.

Kumar, A., Vishwakarma, H. S., Singh, J., Dwivedi, S., & Kumar, M. (2015). Microbial Pigments: Production And Their Applications In Various Industries. International Journal of Pharmaceutical, Chemical & Biological Sciences, 5(1). 203-212.

Lyra, F. D. A., Gonçalves de Lima, O., Coelho, J. S. B., Albuquerque, M. M. F., Maciel, G. M., Oliveira, L. L., & Maciel, M. C.N. (1964). Ciclamicina e ciclacidina: dois novos antibióticos produzidos pelo Streptomyces capoamus nov. sp. Anais da Academia Brasileira de Ciências 36(3), 323-334.

Manikkam, R., Venugopal, G., Ramasamy, B., & Kumar, V. (2015). Effect of critical medium components and culture conditions on antitubercular pigment production from novel Streptomyces sp D25 isolated from Thar desert, Rajasthan. Journal of Applied Pharmaceutical Science, 5(6), 015–019.

Metwally, R. A., El-Sersy, N. A., El Sikaily, A., Ghozlan, H. A., & Sabry, S. A. (2017). Statistical optimization and characterization of prodigiosin from a marine Serratia rubidaea RAM-Alex. Journal of Pure and Applied Microbiology, 11(3), 1259–1266.

Parmar, R. S., & Singh, C. (2018). A comprehensive study of eco-friendly natural pigment and its applications. Biochemistry and Biophysics Reports, 13, 22–26.

Ramesh, C., Vinithkumar, N. V., Kirubagaran, R., Venil, C. K., & Dufossé, L. (2019). Multifaceted applications of microbial pigments: current knowledge, challenges and future directions for public health implications. Microorganisms, 7(7), 186.

Rana, B., Bhattacharyya, M., Patni, B., Arya, M., & Joshi, G. K. (2021). The Realm of Microbial Pigments in the Food Color Market. Frontiers in Sustainable Food Systems, 5, 54 1-14.

Rodrigues, J. P., Prova, S. S., Moraes, L. A. B., & Ifa, D. R. (2018). Characterization and mapping of secondary metabolites of Streptomyces sp. from caatinga by desorption electrospray ionization mass spectrometry (DESI–MS). Analytical and bioanalytical chemistry, 410(27), 7135-7144.

Saito, S., Kato, W., Ikeda, H., Katsuyama, Y., Ohnishi, Y., & Imoto, M. (2020). Discovery of “heat shock metabolites” produced by thermotolerant actinomycetes in high-temperature culture. The Journal of antibiotics, 73(4), 203-210,

Sayed, A. M., Hassan, M. H., Alhadrami, H. A., Hassan, H. M., Goodfellow, M., & Rateb, M. E. (2020). Extreme environments: microbiology leading to specialized metabolites. Journal of applied microbiology, 128(3), 630-657,

Sen, T., Barrow, C. J., & Deshmukh, S. K. (2019). Microbial Pigments in the Food Industry—Challenges and the Way Forward. Frontiers in Nutrition, 6(March), 1–14.

Sharma, P., Singh, T. A., Bharat, B., Bhasin, S., & Modi, H. A. (2018). Approach towards different fermentative techniques for the production of bioactive actinobacterial melanin. Beni-Suef University journal of basic and applied sciences, 7(4), 695-700.

Shirling, E. B., Gottlieb, D. (1996). Methods for characterization of Streptomyces species. International Journal of Systematic and Evolutionary Microbiology, 16(3), 313-340. https://doi: 10.1099/00207713-16-3-313.

Sierra, G. (1957) A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of contact between cells and fatty substrates. Antonie van Leeuwenhoek, 23, 15-22,

Subramanian, P., & Gurunathan, J. (2020). Differential Production of Pigments by Halophilic Bacteria Under the Effect of Salt and Evaluation of Their Antioxidant Activity. Applied biochemistry and biotechnology, 190(2), 391-409.

Tang, X., Zhao, J., Li, K., Chen, Z., Sun, Y., & Gao, J. (2019). Streptomyces cyaneochromogenes sp. nov., a blue pigment-producing actinomycete from manganese-contaminated soil. International journal of systematic and evolutionary microbiology, 69(8), 2202-2207,

Terán Hilares, R., de Souza, R. A., Marcelino, P. F., da Silva, S. S., Dragone, G., Mussatto, S. I., & Santos, J. C. (2018). Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber. Food Chemistry, 245(May 2017), 786–791.

Trivedi, N., Tandon, S., & Dubey, A. (2017). Fourier transform infrared spectroscopy (FTIR) profiling of red pigment produced by Bacillus subtilis PD5. African Journal of Biotechnology, 16(27), 1507-1512.

Vendruscolo, F., Luise Müller, B., Esteves Moritz, D., De Oliveira, D., Schmidell, W., & Luiz Ninow, J. (2013). Thermal stability of natural pigments produced by Monascus ruber in submerged fermentation. Biocatalysis and Agricultural Biotechnology, 2(3), 278–284.

Venil, C. K., Dufossé, L., & Renuka Devi, P. (2020). Bacterial pigments: sustainable compounds with market potential for pharma and food industry. Frontiers in Sustainable Food Systems, 4, 100,

Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 173(2), 697-703,

Zhou, Y., Han, L. R., He, H. W., Sang, B., Yu, D. L., Feng, J. T., & Zhang, X. (2018). Effects of agitation, aeration and temperature on production of a novel glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and scale-up based on volumetric oxygen transfer coefficient. Molecules, 23(1), 125, 1-14.




How to Cite

SILVA, A. M. da; SOBRAL, M. de A. .; CRUZ FILHO, I. J.; XAVIER, A. T. de Q.; SILVA, M. S. de L.; SANTOS, B. S. .; GÓES, A. J. da S.; SOARES, W. de A.; ARAÚJO, J. M.; LIMA-GOMES, G. M. de S. Red pigment production by Amycolatopsis sp. UFPEDA 3422. Research, Society and Development, [S. l.], v. 11, n. 7, p. e24711729841, 2022. DOI: 10.33448/rsd-v11i7.29841. Disponível em: Acesso em: 7 jul. 2022.



Agrarian and Biological Sciences