Antimicrobial resistance profile of Salmonella spp. isolated from non-edible animal products from slaughterhouses.




Salmonelosis; One health; Food safety; Infection control; Food technology.


Animal origin flours is the non-edible by-product resulting from the processing of waste from the slaughter of animals, not intended for human consumption. In addition to taking advantage of waste, this process aims to reduce environmental damage. However, during some stage of the process of its elaboration may occur contamination by antimicrobials resistant microorganisms such as Salmonella spp. When serving as food for these animals, these products can spread pathogens on farms, causing flock infection. Food contaminated with Salmonella spp. antimicrobial resistant has a direct negative impact on poultry performance, as well as a risk to consumer health through carcass consumption. Thus, the aim of the present study was to investigate the antimicrobial resistance profile in Salmonella spp. isolated from non-edible animal from slaughterhouses located in Bahia and Pernambuco states, Brazil. From biochemical tests for isolation and identification of Salmonella spp., 81 isolates were randomly selected to be submitted to antimicrobial susceptibility testing using the plate diffusion method. Most of the isolates was sensitive to the antimicrobials tested. Nalidixic acid showed the highest percentage among those that were resistant, one of the antimicrobials used in the treatment of salmonellosis. This fact can be considered worrying, since the food production chain of animal origin can be an important carrier of resistant strains, especially since it is at the beginning of the production process.


Ahmed, H. A., El-Hofy, F. I., Shafik, S. M., Abdelrahman, M. A., & Elsaid, G. A. (2016). Characterization of virulence-associated genes, antimicrobial resistance genes, and class 1 integrons in Salmonella enterica serovar Typhimurium isolates from chicken meat and humans in Egypt. Foodborne pathogens and disease, 13(6), 281-288. https://doi/ 10.1089/fpd.2015.2097

Alam, M. U., Rahman, M., Islam, M. A., Asaduzzaman, M., Sarker, S., Rousham, E., & Unicomb, L. (2019). Human exposure to antimicrobial resistance from poultry production: assessing hygiene and waste-disposal practices in Bangladesh. International Journal of Hygiene and Environmental Health, 222(8), 1068-1076. https://doi/10.1016/j.ijheh.2019.07.007

Alao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability, 9(7), 1089. https://doi/10.3390/su9071089

Andino, A., & Hanning, I. (2015). Salmonella enterica: survival, colonization, and virulence differences among serovars. The Scientific World Journal, 2015.

Antonio, N. D. S., Oliveira, A. C., Canesini, R., Rocha, J. R., & Pereira, R. E. P. (2009). Mecanismos de resistência bacteriana. Rev. Cient. Elet. Med. Vet, 200(2), 4.

Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: the role of poultry meat. Clinical microbiology and infection, 22(2), 110-121.

Asfaw Ali, D., Tadesse, B., & Ebabu, A. (2020). Prevalence and antibiotic resistance pattern of Salmonella isolated from caecal contents of exotic chicken in Debre Zeit and Modjo, Ethiopia. International Journal of Microbiology, 2020.

Bada-Alambedji, R., Fofana, A., Seydi, M., & Akakpo, A. J. (2006). Antimicrobial resistance of Salmonella isolated from poultry carcasses in Dakar (Senegal). Brazilian Journal of Microbiology, 37(4), 510-515.

Bauer, A. W. (1966). Antibiotic susceptibility testing by a standardized single disc method. Am J clin pathol, 45, 149-158.

Borges, K. A., Furian, T. Q., Souza, S. N. D., Salle, C. T. P., Moraes, H. L. D. S., & Nascimento, V. P. D. (2019). Antimicrobial resistance and molecular characterization of Salmonella enterica serotypes isolated from poultry sources in Brazil. Brazilian Journal of Poultry Science, 21 (1), 001-008.

Brasil. (2007). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Antimicrobianos:bases teóricas e uso clínico. Retrieved May 10, 2019, from: <>.

Brasil. Ministério da Saúde Pecuária e Abastecimento. (2021). Programa de Vigilância e Monitoramento da Resistência aos Antimicrobianos no Âmbito da Agropecuária (2019-2022). Retrieved May 21, 2022, from:

Chen, H. M., Wang, Y., Su, L. H., & Chiu, C. H. (2013). Nontyphoid Salmonella infection: microbiology, clinical features, and antimicrobial therapy. Pediatrics & Neonatology, 54(3), 147-152.

Clinical and Laboratory Standards Institute. 2020. Performance standards for antimicrobial disk susceptibility testing: Fourteenth informational supplement. CLSI document M02-M07, M11, ed. 30, 332p. Clinical And Laboratory Standards Institute, Wayne, PA.

Da Silva, N., Junqueira, V. C. A., de Arruda Silveira, N. F., Taniwaki, M. H., Gomes, R. A. R., & Okazaki, M. M. (2017). Manual de métodos de análise microbiológica de alimentos e água (5th ed.). Blucher.

De Souza, R. B., Magnani, M., & de Oliveira, T. C. R. M. (2010). Mecanismos de resistência às quinolonas em Salmonella spp. Semina: Ciências Agrárias, 31(2), 413-427.

Duarte, D. A. M., Ribeiro, A. R., Vasconcelos, A. M. M., Santos, S. B., Silva, J. V. D., Andrade, P. L. A. D., & Falcão, L. S. P. D. C. D. A. (2009). Occurrence of Salmonella spp. in broiler chicken carcasses and their susceptibility to antimicrobial agents. Brazilian Journal of Microbiology, 40(3), 569-573.

European Food Safety Authority. (2014). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2012. EFSA Journal. 12(2), 35-47.

Evangelopoulou, G., Kritas, S., Govaris, A., & Burriel, A. R. (2013). Animal salmonelloses: a brief review of? host adaptation and host specificity? of Salmonella spp. Veterinary World, 6(10), 703.

Fayemi, P. O., Muchenje, V., Yetim, H., & Ahhmed, A. (2018). Targeting the pains of food insecurity and malnutrition among internally displaced persons with nutrient synergy and analgesics in organ meat. Food Research International, 104, 48-58.

Folster, J. P., Pecic, G., Bolcen, S., Theobald, L., Hise, K., Carattoli, A.; Whichard, J. M. (2010). Characterization of extended-spectrum cephalosporin–resistant Salmonella enterica serovar heidelberg isolated from humans in the United States. Foodborne Pathogens and Disease, 7(2), 181-187.

Folster, J. P., Pecic, G., Singh, A., Duval, B., Rickert, R., Ayers, S.; Abbott, J. Mcglinchey, B.; Bauer-Turpin, J.; Haro, J.; Hise, K; Zhao, S.; Fedorka-Cray, P. J.; Whichard, J.; Mcdermot, P.F. (2012). Characterization of extended-spectrum cephalosporin–resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009. Foodborne Pathogens and Disease, 9(7), 638-645.

Folster, J. P., Tolar, B., Pecic, G., Sheehan, D., Rickert, R., Hise, K., Zhao, S.; Fedorka-Cray, P. J.; Mcdermott, P. Whichard, J. M. (2014). Characterization of bla CMY plasmids and their possible role in source attribution of Salmonella enterica serotype Typhimurium infections. Foodborne pathogens and disease, 11(4), 301-306.

Frye, J. G., & Jackson, C. R. (2013). Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from US food animals. Frontiers in microbiology, 4, 135.

Gebreyes, W. A., & Thakur, S. (2005). Multidrug-resistant Salmonella enterica serovar Muenchen from pigs and humans and potential interserovar transfer of antimicrobial resistance. Antimicrobial Agents and Chemotherapy, 49(2), 503-511.

Guimarães, D. O., Momesso, L. D. S., & Pupo, M. T. (2010). Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Química Nova, 33, 667-679.

Helms, M., Evans, S., Vastrup, P., & Gerner-Smidt, P. (2003). Short and long term mortality associated with foodborne bacterial gastrointestinal infections: registry based studyCommentary: matched cohorts can be useful. Bmj, 326(7385), 357.

Helms, M., Simonsen, J.,& Mølbak, K. (2006). Foodborne bacterial infection and hospitalization: a registry-based study. Clinical Infectious Diseases, 42(4), 498-506.

Hooper, D. C. (2001). Emerging mechanisms of fluoroquinolone resistance. Emerging infectious diseases, 7(2), 337.

Hooper, D. C., & Jacoby, G. A. (2015). Mechanisms of drug resistance: quinolone resistance. Annals of the New York academy of sciences, 1354(1), 12-31.

Hunter, J. C.; Francois Watkins, L. K. (2017). Salmonellosis (Nontyphoidal). Chapter 3 Infectious Diseases Related to Travel. June 12, 2017: Centers for Disease Control and Prevention. Retrieved January 22, 2019, from:

Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of food science and technology, 49(3), 278-293.

Khojasteh, F., Hosseinzadeh, S., Fazeli, M., & Poormontaseri, M. (2018). Determination of tetracycline and enrofloxacine resistance in salmonella isolated from poultry. International Journal of Nutrition Sciences, 3(1), 38-43.

Liljebjelke, K. A., Hofacre, C. L., White, D. G., Ayers, S., Lee, M. D., & Maurer, J. J. (2017). Diversity of antimicrobial resistance phenotypes in Salmonella isolated from commercial poultry farms. Frontiers in veterinary science, 4, 96.

Liu, S., Tang, J., Tadapaneni, R. K., Yang, R., & Zhu, M. J. (2018). Exponentially increased thermal resistance of Salmonella spp. and Enterococcus faecium at reduced water activity. Applied and Environmental Microbiology, 84(8), e02742-17.

Malav, O. P., Birla, R., Virk, K. S., Sandhu, H. S., Mehta, N., Kumar, P., & Wagh, R. V. (2018). Safe disposal of slaughterhouse waste: Mini review.

Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clinical microbiology reviews, 24(4), 718-733.

Mathi, P., Kunyanga, C., Gichure, J. N., & Imungi, J. K. (2016). Utilization of beef slaughter by-products among the Kenyan pastoral communities. Food Science and Quality Management, 53, 78-83.

Mølbak, K. (2004). Spread of resistant bacteria and resistance genes from animals to humans–the public health consequences. Journal of Veterinary Medicine, Series B, 51(8‐9), 364-369. 10.1111/j.1439-0450.2004.00788.x

Morente, E. O., Fernández-Fuentes, M. A., Burgos, M. J. G., Abriouel, H., Pulido, R. P., & Gálvez, A. (2013). Biocide tolerance in bacteria. International journal of food microbiology, 162(1), 13-25.

Mota, R. A., da Silva, K. P. C., de Freitas, M. F. L., Porto, W. J. N., & da Silva, L. B. G. (2005). Utilização indiscriminada de antimicrobianos e sua contribuição a multirresitência bacteriana. Brazilian Journal of Veterinary Research and Animal Science, 42(6), 465-470.

Okanović, Đ., Ristić, M., Kormanjoš, Š., Filipović, S., & Živković, B. (2009). Chemical characteristics of poultry slaughterhouse byproducts. Biotechnology in Animal Husbandry, 25(1-2), 143-152.

Pacheco, J. W. (2006). Guia técnico ambiental de graxarias. São Paulo: CETESB. Retrieved March 29, 2019, from

Pal, M., Merera, O., Abera, F., Rahman, M. T., & Hazarika, R. A. (2015). Salmonellosis: A major foodborne disease of global significance. Beverage Food World, 42(12), 21-24.

Pandini, J. A., Pinto, F. G. D. S., Muller, J. M., Weber, L. D., & Moura, A. C. D. (2015). Ocorrência e perfil de resistência antimicrobiana de sorotipos de Salmonella spp. isolados de aviários do Paraná, Brasil. Arquivos do Instituto Biológico, 82, 1-6.

Pardi, M. C., dos Santos, I. F., de Souza, E. R., & Pardi, H. S. (2007). Ciência, higiene e tecnologia da carne. CEGRAF-UFG.

Pitout, J. D., & Laupland, K. B. (2008). Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. The Lancet infectious diseases, 8(3), 159-166.

Robles-Jimenez, L. E., Aranda-Aguirre, E., Castelan-Ortega, O. A., Shettino-Bermudez, B. S., Ortiz-Salinas, R., Miranda, M., Li, X., Angeles-Hernandez, J. C. Vargas-Bello-Pérez,E. & Gonzalez-Ronquillo, M. (2021). Worldwide traceability of antibiotic residues from livestock in wastewater and soil: A systematic review. Animals, 12(1), 60.

Rodrigues-Silva, C., Maniero, M. G., Peres, M. S., & Guimarães, J. R. (2014). Ocorrência e degradação de quinolonas por processos oxidativos avançados. Química Nova, 37(5), 868-885.

Salim, H. M., Huque, K. S., Kamaruddin, K. M., & Haque Beg, A. (2018). Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Science progress, 101(1), 52-75.

Sánchez‐Salazar, E., Gudiño, M. E., Sevillano, G., Zurita, J., Guerrero‐López, R., Jaramillo, K., & Calero‐Cáceres, W. (2019). Antibiotic resistance of Salmonella strains from layer poultry farms in central Ecuador. Journal of applied microbiology, 128(5), 1347-1354.

SAS, S., & Guide, S. U. S. (2004). Version 9.1, Volumes 1-7. SAS Institute Inc., Cary, NC, USA.

Singh, V. (2013). Salmonella serovars and their host specificity. J. Vet. Sci. Anim. Husb, 1(3):301, 10-15744.

Silva, F. F. P. D., Horvath, M. B., Silveira, J. G., Pieta, L., & Tondo, E. C. (2014). Occurrence of Salmonella spp. and generic Escherichia coli on beef carcasses sampled at a brazilian slaughterhouse. Brazilian Journal of Microbiology, 45(1), 17-24.

Tegegne, F. M. (2019). Epidemiology of Salmonella and its serotypes in human, food animals, foods of animal origin, animal feed and environment. J Food Nutr Health, 2 (1), 7-14.

Thyagarajan, D., Barathi, M., & Sakthivadivu, R. (2013). Scope of poultry waste utilization. IOSR J Agric Vet Sci, 6(5), 29-35.

United States Food and Drug Administration. FDA (2019). Releases 2016-2017 NARMS Integrated Summary, Streamlines report Format. Silver Spring, MD: U.S. Food and Drug Administration. Retrieved April 20, 2020, from:

Uzzau, S., Brown, D. J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesús, J., Platt, D. J., & Olsen, J. E. (2000). Host adapted serotypes of Salmonella enterica. Epidemiology & Infection, 125(2), 229-255.

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillanta, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649-5654.

World Health Organization. (2012). Antimicrobial Resistance. Fact sheet 194. Retrieved May 20, 2017 from: <>.

World Health Organization. (2017). Guidelines on use of medically important antimicrobials in food-producing animal. Retrieved March, 11, 2020, from:

World health organization. (2020). Antibiotic resistance. Retrieved January 22, 2022, from:

Yates, C. M., Pearce, M. C., Woolhouse, M. E. J.,& Amyes, S. G. B. (2004). High frequency transfer and horizontal spread of apramycin resistance in calf faecal Escherichia coli. Journal of Antimicrobial Chemotherapy, 54(2), 534-537.




How to Cite

COSTA, W. L. R.; SILVA, R. A. R. da .; SANTOS, E. T. S. R. dos .; LEAL NETO, A. F.; SILVA, M. M. N. .; FERNANDES, L. M. B. .; NASCIMENTO, E. R. do . Antimicrobial resistance profile of Salmonella spp. isolated from non-edible animal products from slaughterhouses. Research, Society and Development, [S. l.], v. 11, n. 9, p. e46311930185, 2022. DOI: 10.33448/rsd-v11i9.30185. Disponível em: Acesso em: 13 aug. 2022.



Health Sciences