Antioxidant activity, Physicochemical characterization and study of the bioactivity of fixed oil of Attalea speciosa Mart. ex Spreng (Arecaceae) against fungal pathogens

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.30307

Keywords:

Caatinga; Ethnobotany; Ethnopharmacology.

Abstract

This work evaluated the antioxidant properties, physicochemical profile, fatty acid profile and antifungal activity of the fixed oil of the plant species Attalea speciosa Mart. ex Spreng (Arecaceae). This plant is popularly known in Brazil as babaçu, baguaçu, coco de-macaco and, in the Tupi language, uauaçu and presents an enormous versatility regarding its use. Different methodological tests were employed in order to characterize the chemical, physicochemical, antioxidant and antifungal profile of this species, where the results were promising, since the majority composition of the oil was lauric acid, presenting a total of 42.13%. In addition, the antioxidant activity showed that, against gallic acid, the oil presented a total antioxidant capacity of 733.5. The physical-chemical characterization showed relevant aspects, necessary for future incorporation and stability tests of the oil, such as acidity index, refraction index, peroxide index and viscosity. Finally, the fixed oil showed relevant antifungal activity for all fungal strains tested, presenting MIC of 3.1 mg/ml for Candida albicans, 6.3 µl/ml for Candida parapisilosis and 25.0 mg/ml of A. speciosa oil for Candida glabrata

References

Almeida, M.Z., 2011. Plantas medicinais: abordagem histórico-contemporânea.

American, Chemists, Society, 1995. Official Methods and Recommended Practices of the American Oil Chemits’ Society. 4th. C.S. Official Method Ch , 1–91.

Araújo, F. R; Gonzáles-Pérez, S. E; Lopes, M. A; Viégas, J. M. Ethnobotany of babaçu palm (Attalea speciosa Mart.) in Tucuruí Lake Protected Areas Mosaic – eastern Amazon. Acta Botânica Brasilica, Pará, v. 30, n. 2, p. 193-204, Apr/ June. 2016.

Barroqueiro, E.S., Prado, D.S., Barcellos, P.S., 2016. Atividade imunomoduladora e antimicrobiana do mesocarpo de babaçu melhora a sobrevivência na sepse letal. Complemento baseado em. Evid Alternat Med , 2859652–2859652.

Bauer, L.C., Lacerda, E.C.Q., Santos, L.S., Ferrão, S.P.B., Fontan, R.D.C.I., Veloso, C.M., Bonomo, R.C.F., 2019. Antioxidant Activity and Bioactive Compounds of Babassu (Orbignya phalerata) Virgin Oil Ob- tained by Different Methods of Extraction. The Open Food Science Journal , 11–11.

Bergsson, G.; Arnfinnsson, J.; Steingrimsson, Ó.; Thormar, H. In Vitro Killing of Candida albicans by Fatty Acids and Monoglycerides. J. Antimicrobial Chemotherapy , v.45, p. 3209–3212, 2001.

Blois, M.S., 1958. Antioxidant Determinations by the Use of a Stable Free Radical. URL: https://dx.doi. org/10.1038/1811199a0, doi:10.1038/1811199a0.

Clément, M., Tremblay, J., Lange, M., Thibodeau, J., Belhumeur, P., 2007. Whey-derived free fatty acids suppress the germination of Candida albicans in vitro. FEMS Yeast Research 7, 276–285.

CLSI, 2018. Clinical and Laboratory Standards Institute - CLSI, in: Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100, Wayne, PA.

Costa, C.D.L., et al., 2015. Caracterização físico-química de óleos fixos artesanais de coco babaçu (Or- bignya phalerata) de regiões ecológicas do estado do Maranhão, Brasil.

Das U. Essential fatty acids, free radicals, limphokines and AIDS. J Assoc Physicians India 1987;35:611–2.

Fernandes, L. C. B., & Da Silva, C. S. (2022). Capítulo 5 plantas alimentícias não convencionais no rio grande do norte: uma revisão de literatura. Meio ambiente, 100.

Gouveia, D.S., Deyzi, et al., 2019a. Potencial nutricional e perfil lipídico do óleo da amêndoa do coco catolé (Syagrus oleracea Mart.).

Hauff, S.N., et al., 2010. Representatividade do sistema nacional de unidades de conservação na Caatinga. . Instituto, A., Lutz, . Métodos físico-químicos para análise de alimentos: normas analíticas do Instituto Adolfo Lutz, in: ANVISA; 2005. 1018pp.

de Lima Rufino, M.U., de Medeiros Costa, J.T., da Silva, V.A., de Holanda Cavalcanti Andrade, L., 2008. Conhecimento e uso do ouricuri (Syagrus coronata) e do babaçu (Orbignya phalerata) em Buíque, PE, Brasil. URL: https://dx.doi.org/10.1590/s0102-33062008000400025, doi:10.1590/ s0102-33062008000400025.

da Luz Costa, C., et al., 2015. Caracterização físico-química de óleos fixos artesanais do coco babaçu (Orbignya phalerata) de regiões ecológicas do estado do maranhão, Brasil. . doi:doi.org/10.18817/ pef.v20i1.711.

Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty Acids and Derivatives as Antimicrobial Agents. J. Antimicrobial Chemotherapy , p. 23-28, 1972.

Ma, Q., Ola, M., Iracane, E., Butler, G., 2019. Susceptibility to Medium-Chain Fatty Acids Is Associated with Trisomy of Chromosome 7 in Candida albicans. Aug 14, 402–421.

Machado, F.C .; Portela, M. B.; Cunha, A. C.; Souza, I. P. R.; Soares, R. M. A.; Castro, G. F. B. A.; Antifungal activity of chlorhexidine on Candida spp. biofilm Revista Odontológica. UNESP, Araraquara, v.39, p. 271-275, 2010.

Magdalena, U.R., Silva, L.D., Oliveira, F.A., 2019. Revisão geográfica de espécimes do bioma Caatinga no herbário Jardim Botânico do Rio de Janeiro (RB). Biodivers Dados J 7.

Malafaia, C.B., Jardelino, A.C.S., Silva, A.G., de Souza, E.B., Macedo, A.J., dos Santos Correia, M.T., Silva, M.V., 2018. Effects of Caatinga Plant Extracts in Planktonic Growth and Biofilm Formation in Ralstonia solanacearum. Microbial Ecology 75, 555–561. URL: https://dx.doi.org/10.1007/s00248-017- 1073-0, doi:10.1007/s00248-017-1073-0.

Maniglia, B.C., Tapia-Blácido, D.R., 2016. Isolation and characterization of starch from babassu mesocarp. Food Hydrocolloids 55, 47–55. URL: https://dx.doi.org/10.1016/j.foodhyd.2015.11.001, doi:10.1016/ j.foodhyd.2015.11.001.

Melo, E.; Michels, F.; Arakaki, D.; et al. First Study on the Oxidative Stability and Elemental Analysis of Babassu (Attalea speciosa) Edible Oil Produced in Brazil Using a Domestic Extraction Machine. Molecules, v. 24, p.4235, 2019.

Mesquita, M., Pinto, T., Moreira., R., 2017. Potencial antimicrobiano de extratos e moléculas isolados de plantas da Caatinga: uma revisão. Revista Fitos 11, 216–230. URL: https://dx.doi.org/10.5935/2446- 4775.20170028, doi:10.5935/2446-4775.20170028.

Oliveira, A.I.T., De, 2016. Composição química e potencial antimicrobiano de extratos de folhas de palmeira de Babaçu (Attalea speciosa), Buriti (Mauritia flexuosa) e Macaúba (Acrocomia aculeata). The Scientific World Journal .

Prieto, P., Pineda, M., Aguilar, M., 1999. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry 269, 337–341. URL: https://dx.doi.org/10.1006/abio.1999.4019, doi:10. 1006/abio.1999.4019.

Ragit, S., Kundu, K., Sharma, A. (2022). Performance and Emission Characteristics of VCR Diesel Engine Fueled with Blends of Babassu Oil Methyl Esters and Diesel. In: Singh, L.P., Bhardwaj, A., Iqbal, R., Khanzode, V. (eds) Productivity with Health, Safety, and Environment. Design Science and Innovation. Springer, Singapore. https://doi.org/10.1007/978-981-16-7361-0_29.

Reis, M., Yfa, et al., 2017. Anti-Inflammatory Activity of Babassu Oil and Development of a Microemulsion System for Topical Delivery. doi:doi.org/10.1155/2017/3647801.

Rossel, J.B., 1993. Manual de Indústria de los Alimentos. Editora Acríbia, Zarragoza, 2.

Rouse, M.S.; Rotger, M.; Piper, K.E.; Steckelberg, J.M.; Scholz, M.; Andrews, J.; Patel, R. In Vitro and In Vivo Evaluations of the Activities of Lauric Acid Monoester Formulations against Staphylococcus aureus. J. Antimicrobial Chemotherapy, vol.49, n. 8, p. 3187-3191,2005.

Santos, T., Carvalho, ., Nascimento-Júnior, J.D., Elvino, ., Do, Prata, A., Paula, 2012. Frutos da Caatinga de Sergipe utilizados na alimentação humana. Scientia plena .

Silva et al. Evaluation of antioxidant activity of Brazilian plants. Pharmacological Research 52 (2005) 229–233

Silva, D.A., Conceição, V., 2017. Identificação de compostos fenólicos por LC / MS-MS e atividades antioxidantes e anti-tirosinase do Attalea speciosa Mart. ex Spreng. Mesocarpo. Journal of Chemical and Pharmaceutical Research , 268–276.

Souza, F.C.F, et al., 2008. Plantas medicinais e seus constituintes bioativos: Uma revisão da bioatividade e potenciais benefícios nos distúrbios da ansiedade em modelos animais. . doi:10.1590/S0102- 695X2008000400023.

Souza, J., Ls, 2014. Aliphatic fatty acids and esters: inhibition of growth and exoenzyme production of Candida, and their cytotoxicity in vitro: anti-Candida effect and cytotoxicity of fatty acids and esters.

Souza, P.A.V., Junior, A., Alves, L., Souza, V., Cabral, L., Fernandes, P., Takiya, C., Menezes, F., Nasciutti, L.E., 2011. Effects of nanocomposite contaning Orbignya speciosa lipophilic extract on Benign Prostatic Hyperplasia. Journal of Ethnopharmacology , 135–146.

Vasconcelos, A.D.M., Henriques, I.G.N., Souza, M.P.D., Santos, W.D.S., Santos, W.D.S., Ramos, G.G., 2017. Caracterização florística e fitossociológica em área de Caatinga para fins de manejo florestal no município de São Francisco-PI. URL: https://dx.doi.org/10.30969/acsa.v13i4.967, doi:10.30969/ acsa.v13i4.967.

Published

28/05/2022

How to Cite

VIANA, E. S. .; ALVES, J. V. de O. .; AGUIAR, I. F. da S. .; SILVA, F. H. S. da; SILVA, R. L. da; ARRUDA, L. G. de; BARBOSA, M. F. dos S. .; BARBASA, B. V. D. da R.; AMORIM, L. C. de; SILVA, P. M. da; SILVA, M. V. da. Antioxidant activity, Physicochemical characterization and study of the bioactivity of fixed oil of Attalea speciosa Mart. ex Spreng (Arecaceae) against fungal pathogens. Research, Society and Development, [S. l.], v. 11, n. 7, p. e37311730307, 2022. DOI: 10.33448/rsd-v11i7.30307. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30307. Acesso em: 7 nov. 2024.

Issue

Section

Health Sciences