Yeast biomass production with potential for biological control: process strategies for increasing yield




biocontrol; microbial biomass; fermentation; industrial bioprocess.


The quality of vegetable products is directly linked to the techniques used in the field, in order to ensure safe and healthy products to health. In this context, the use of yeasts with potential for biological control proved to be a promising alternative to assure the safety of these foods. Fermentation processes have been used to promote the development of many products, including the production of yeast biomass. The objective of this work was to verify the influence of the aeration rate and the fed batch process in the production of yeast biomass. A yeast strain with biological control potential, belonging to Embrapa's Semi-Arid crop collection, was subjected to simple batch cultivation and fed with different aeration rates (3, 4, 6 and 8 and concentration of carbon source in the feed medium (200, 400 and 600 g/L). The highest biomass (6.99 g/L) after 24 hours of fermentation was observed in the experiment that used an aeration rate of 8 Regarding the concentration of the carbon source in the feed medium, it was found that the concentration of 200 g/L favored a greater total biomass (11.21 g/L) and reduced the production of ethanol (0.65 g/L ), while the concentration of 600 g/L favored less biomass production (7.90 g/L) and higher ethanol production (9.26 g/L). Thus, it was found that the aeration rate and the fed batch process favor the fermentation strategy, as they contribute to the production of yeast biomass and the overall yield of the process.

Author Biographies

Ana Paula Colares de Andrade, Universidade Federal do Ceará

Deparatmento de Engenharia de Alimentos

Helder Levi da Silva, Universidade Federal do Ceará

Departamento de Engenharia Quimica


Aiba. S.; Humphrey. A.E.; Millis. N. 1973. Biochemical Engineering. 2nd edition. Academic Press. Inc.. 434 p.

Agrano A. G. 1996. A process for producing a biomass of yeast and lactic bacteria. Process Biochemistry. vol. 31. n.4.

Atasoy. I.; Yuceer. M.; Berber. R. 2013. Optimisation of Operating Conditions in Fed-Batch Baker’s Yeast Fermentation. Chemical and Process Engineering. vol.34. n.1. p.175-186.

Bailey. J. E.; Ollis. D. F. 1986. Biochemical Engineering Fundamentals. 2. Ed. New York: McGraw-Hill. 984p.

Bendo. M. I.; Viecelli. C. A. 2009. Controle biológico de Rhizopus nigricans em pós-colheita de morango pela utilização da levedura Saccharomyces cerevisiae em leite in natura. Cascavel. v.2. n.3. p.23-35.

Campos. T. C. M.; Cruz. A. J. G. Controle da vazão de alimentação de glicose em cultivo da levedura de panificação (S. cerevisiae) com vistas a minimizar a formação de etanol. Disponível em:‎. Acesso em 01.06.2013.

Chang. Y. H.; Chan. K. S.; Hsu. C. L.; Chuang. L. T.; Chen. C. Y.; Huang. F.Y.; Jang. H. D. 2013. A comparative study on batch and fed-batch cultures of oleaginous yeast Cryptococcus sp. in glucose-based media and corncob hydrolysate for microbial oil production. Fuel. n.105. p.711–717.

Coelho. A. R..; Hoffmann. F. L.; Hirooka. E. Y. 2003. Biocontrole de doenças pós-colheita de frutas por leveduras. Semina: Ciências Agrárias. Londrina. v. 24. n. 2. p. 337-358. jul./dez.

Daramola. M.O.; Zampraka. L. 2008. Experimental study of the production of biomass by Sacharomyces cerevisiae in a fed batch fermentor. African Journal of Biotechnology, v. 7. n.8. p. 1107-1114.

Difco & Bbl Manual. 2009. Manual of Microbiological Culture Media. Second Edition. Disponível em: Acesso em: 12.05.2013

Fang. T. J.; Chiou. T. Y. 1996. Batch cultivation and astaxanthin production by a mutant of the red yeast. Phaffia rhodozyma NCHU-FS501. Journal of Industrial Microbiology. v. 16. n. 3. p. 175-181.

Ghaly. A. E.; Ei-Taweel. A. A. 1995. Effect of micro-aeration on the growth of Candida pseudotropicalis and production of ethanol during batch fermentation of cheese whey. Bioresource Technology, v. 52. p. 203-217.

Gouvea. A. 2007. Controle em campo e pós-colheita de doenças e metabolismo do morangueiro após tratamento com Saccharomyces cerevisiae. Tese. 85p. Universidade Federal do Paraná. Curitiba.

Johnson. E. A.; Lewis. M. J. 1979. Astaxanthin formation by the yeast Phaffia rhodozyma. Journal of Genetics and Microbiology, v. 115. p. 173-183.

Kim. Y.H.; Kang. S.W.; Lee. J. H.; Chang. H.I.; Yun. C.W.Y.; Paik. H.D.; Kang. C.W.; Kim. S.W. 2007. High cell density fermentation of Saccharomyces cerevisae JUL3 in fed-batch culture for the production of β-glucan. Journal of Industrial Engenieer Chemistry, v. 13. n.1. p.153-158.

Miller. G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analitical Chemistry, v. 31. p. 426.

Miskiewicz. T.; Kasperski. A. 2000. A fuzzy logic controller to control nutrient dosage in a fed-batch baker´s yeast process. Biotechnology Letter, v.22, p.1685-1691.

Moriel. D. G. 2004. Otimização da produção de biomassa e astaxantina pela levedura Phaffia rhodozyma. utilizando processo descontínuo alimentado. Dissertação. 126p. Universidade Federal do Paraná. Curitiba.

Neves. L. C. M. 2003. Obtenção da enzima glicose 6-fosfato desidrogenase utilizando Saccharomyces cerevisiae W303-181. Dissertação. 80p. Faculdade de Ciências Farmacêuticas. Universidade de São Paulo. São Paulo.

Oliveira. C. G. R. 2006. Desenvolvimento de bioprocesso para a produção de biomassa de levedura (Sacharomyces cerevisae) rica em organoselênio. Dissertação. 77p. Universidade Federal do Paraná. Curitiba.

Reed G.; Peppler H.J. 1973. Yeast technology. Westport. 378p.

Reis. G. B. 2009. Simulação e controle do processo de produção de levedura. Dissertação. 91p. Universidade Federal de São Carlos. São Paulo.

Rodrigues. F.; Ludovico. P. Leão. C. 2006. Sugar metabolism in yeasts: an overview of aerobic and anaerobic glucose catabolism. Biodiversity and Ecophysiology of Yeasts: The Yeast Handbook. Chapter 6. p.101-121. Disponivel em: Acesso em: 24.05.2013

Taccari. M.; Canonico. L.; Comitini. F.; Mannazzu. I.; Ciani. M. 2012. Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresource Technology, v. 110. Pages 488-495.

Yamane. Y. I.; Higashida. k.; Nakashimada. Y.; Kakizono.T.; Nishio. N. 1997. Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis. Applied Environmental Microbiogy, v. 63. n. 11. p. 4471-4478.

Win. S.S.; Impoolsup. A.; Noomhorm. A. 1996. Growth kinetics of Saccharomyces cerevisiae in batch and fed-batch cultivation using sugarcane molasses and glucose syrup from cassava starch. Journal of Industrial Microbiology, v.16. n.2. p.117-23.




How to Cite

ANDRADE, A. P. C. de; SILVA, H. L. da; PINTO, G. A. S. Yeast biomass production with potential for biological control: process strategies for increasing yield. Research, Society and Development, [S. l.], v. 9, n. 4, p. e169943057, 2020. DOI: 10.33448/rsd-v9i4.3057. Disponível em: Acesso em: 9 dec. 2021.



Agrarian and Biological Sciences