Chemical characterization of frozen organic strawberries and packed in aluminum
DOI:
https://doi.org/10.33448/rsd-v9i5.3115Keywords:
Fragaria x ananassa Duch; Storage; Post-harvest conservation; Phenolic compounds; Vitamin C.Abstract
The strawberry fruit is very sensitive and easily damaged, generating large post-harvest losses, both commercial and nutritional. Therefore, the improvement of new storage technologies is needed to reduce the both nutrients and sensors losses, increase profitability and maintain it as the organoleptic features of the product. The present work aims to evaluate the chemical characteristics of organic strawberry fruits, whole and processed, conditioned in different packages under freezing for 105 days. Four procedures were used (Pulp with clear plastic packaging; Pulp with plastic-wrapped aluminum; Whole lid with transparent plastic; Whole lid with plastic-wrapped aluminum) for 105 days. The fruits were analyzed for soluble solids, titratable acidity, phenolic compounds, SS / TA ratio, and ascorbic acid. Titratable acidity shows a reduction from 21 days of storage for whole fruits and from 42 days when shipped on aluminum foil. The soluble solids content also decreases due to storage, being more pronounced in whole fruits wrapped in aluminum. Ascorbic acid shows a decrease in all treatments after freezing but remains stable throughout the storage period. The SS / TA ratio decreased with freezing pulp but remained stable until the last evaluation. Phenolic compounds increase over the freezing period of both pulp and fruit, with or without aluminum foil as a wrapper in the package. In general, or frozen, it is suitable for maintaining the chemical properties of strawberry fruits. A pulp as storage was more effective in maintaining the chemical properties of the fruit. For most of the characteristics analyzed, aluminum foil does not contribute significantly to the maintenance or improvement of pulp/fruit chemical properties when frozen.
References
Andrade Júnior, V. C., Guimarães, A. G., Azevedo, A. M., Pinto, N. A. V. D. & Ferreira, M. A. M. (2016). Conservação pós-colheita de frutos de morangueiro em diferentes condições de armazenamento. Horticultura Brasileira, 34 (3), 405-411.
AOAC. Association of oficial analytical chemists. (1984). Official methods of analysis. 14th ed. Arlingyon: Sidney Willians.
Benassi, M.T. & Antunes, A.J. (1988). Comparison of metaphosphoric and oxalic acids as extractant solutions for the determination of vitamin C in selected vegetables. Arquivos de Biologia e Tecnologia, Curitiba, 31(4), 507-513.
Brackmann, A., Hunsche, M., Waclawovsky, A. J. & Donazzolo, J. (2001). Armazenamento de morangos cv. Oso Grande (Fragaria ananassa L.) sob elevadas pressões parciais de CO2. Revista Brasileira de Agrociência, 7(1), 10-14.
Brackmann, A., Pavanello, E. P., Both, V., Janisch, D. I., Schmitt, O. J. & Giménez, G. (2011). Avaliação de genótipos de morangueiro quanto à qualidade e potencial de armazenamento. Revista Ceres, 58(5): 542-547.
Burdurlu, H. S., Koca, N. & Karadeniz, F. (2006). Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering, 74(2), 211–216.
Camargo, L. K. P., Resende, J. T. V., Galvão, A. G., Baier, J. E., Faria, M. V. & Camargo, C. K. (2009). Caracterização química de frutos de morangueiro cultivados em vasos sob sistemas de manejo orgânico e convencional Chemical characterization of strawberry fruits in the organic and conventional cropping systems in pots. Semina: Ciências Agrárias, Londrina, 30(suplemento 1), 993-998.
Castricini, A., Dias, M. S. C., Martins, R. N. & Santos, L. O. (2017). Morangos produzidos no semiárido de Minas Gerais: qualidade do fruto e da polpa congelados. Brazilian Journal of Food Technology, 20, e2016149. Epub August 17.
Chitarra, M. I. F. & Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio. Lavras: UFLA, 785.
Costa, R. C., Calvete, E.O., Reginatto, F. H., Cecchetti, D., Loss, J. T., Rambo, A. & Tessaro F. (2011). Telas de sombreamento na produção de morangueiro em ambiente protegido. Horticultura Brasileira, 29(1), 98-102.
Derossi, A., De Pilli, T. & Fiore, A. G. (2010). Vitamin C kinetic degradation of strawberry juice stored under non-isothermal conditions. LWT - Food Science and Technology, 43(4), 590–595.
Donazzolo, J., Hunsche, M., Brackmann, A. & Waclawovsky, A. J. (2003). Utilização de filmes de polietileno de baixa densidade(PEBD) para prolongar a vida pós-colheita de morangos, cv. oso grande. Ciência e Agrotecnologia, 27(1), 165-172.
Edagi, F. K., Sestari, I., Sasaki, F. F., Cabral, S. M., Meneghini, J. & Kluge, R. A. (2009). Aumento do potencial de armazenamento refrigerado de nêsperas 'Fukuhara' com o uso de tratamento térmico. Pesquisa Agropecuária Brasileira, 44(10), 1270-1276.
Fawole, O. A. & Opara, U. L. (2013). Harvest Discrimination of Pomegranate Fruit: Postharvest Quality Changes and Relationships between Instrumental and Sensory Attributes during Shelf Life. Journal of Food Science, 78(8), S1264–S1272.
Freire, J. M., Abreu, C. M. P. de, Rocha, D. A., Corrêa, A. D. & Marques, N. R. (2013). Quantificação de compostos fenólicos e ácido ascórbico em frutos e polpas congeladas de acerola, caju, goiaba e morango. Ciência Rural, 43(12), 2291–2295.
Hannum, S. M. (2004). Potential impact of strawberries on human health: a review of the science. Critical Reviews in Food Science and Nutrition, 44(1), 1-17.
IAL - Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos. São Paulo: IAL, 2008. 1020 p. Disponível em:
<http://www.crq4.org.br/sms/files/file/analisedealimentosial_2008.pdf>. Acesso em: setembro de 2019
Kader, A. A. (1999). Fruit maturity, ripening and quality relationshiips. Acta Horticulturae, (485), 203–208.
MAPA - Ministerio da agricultura pecuária e abastecimento. (2016). Regulamento técnico para fixação dos padrões de identidade e qualidade para polpa de morango. Diário Oficial da União, (169), 1-6. <http://www.in.gov.br/autenticidade.html>. Acesso em: Setembro de 2019.
Melo, E. A., Maciel, M. I. S., Lima, V.L.A.G. & Araújo, C.R. (2008). Teor de fenólicos totais e capacidade antioxidante de polpas congeladas de frutas. Alimento e Nutrição, 19(1), 67- 72.
Melo, E. A., Lima, V. L. A. G. & Nascimento, P. P. (2000). Temperatura no armazenamento de Pitanga. Scientia Agricola, 57(4), 629-634.
Mercali, G. D., Jaeschke, D. P., Tessaro, I. C. & Marczak, L. D. F. (2012). Study of vitamin C degradation in acerola pulp during ohmic and conventional heat treatment. LWT - Food Science and Technology, 47(1), 91–95.
Mirahmadi, F., Hanafi, Q. M., Alizadeh, M., Mohamadi, H. & Sarsaifee, M. (2011). Effect of low temperature on physico-chemical properties of different strawberry cultivars. African Journal of Food Science and Technology, 2(5), 109-115.
Moraes, F. A., Cota, A. M., Campos, F. M. & Pinheiro-Sant’Ana, H. M. (2010). Perdas de vitamina C em hortaliças durante o armazenamento, preparo e distribuição em restaurantes. Ciência & Saúde Coletiva, 15(1), 51–62.
Moraes, I. V. M., Censi, S. D., Benedetti, B. C., Mamede, A. M. G. N. Soares, A. G. & Barboza, H. T. G. (2008). Características físicas e químicas de morango processado minimamente e conservado sob refrigeração e atmosfera controlada. Food Science and Technology, 28(2), 274-281.
Nelson, D. L. & Cox, M. M. (2017). Lehninger's principles of biochemistry. 7th ed. New York: WH Freeman & Co, 1441–2003.
Nunes, A., C. D., Neto, A. F., Nascimento, I. K. S., Oliveira, F. J. V. & Mesquita, R. V. C. (2017). Armazenamento de mamão formosa revestido à base de fécula de mandioca. Revista de Ciências Agrárias, 40(1), 254-263.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 20 março 2020.
Pompeu, D. R., Barata, V.C.P. & Rogez, H. (2009). Impacto da refrigeração sobre variáveis de qualidade dos frutos do açaizeiro (Euterpe oleracea). Alimentos e Nutrição 20(1), 141-148.
Portela, I. P., Peil, R. M. N., Rodrigues, S. & Carini, F. (2012). Densidade de plantio, crescimento, produtividade e qualidade das frutas de morangueiro “Camino Real” em hidroponia. Revista Brasileira de Fruticultura, 34(3), 792–798.
Qiu, S., Wang, J. & Gao, L. (2015). Qualification and quantisation of processed strawberry juice based on electronic nose and tongue. LWT - Food Science and Technology, 60(1), 115–123.
Resende, J. T. V., Camargo, L. K. P., Argandoña, E.J.S., Marchese, A. & Camargo, C. K. (2008). Sensory analysis and chemical characterization of strawberry fruits. Horticultura Brasileira, 26(3), 371-374.
Saltveit, M. E. (2017). Synthesis and Metabolism of Phenolic Compounds. Fruit and Vegetable Phytochemicals, 115–124.
Salvador, M. P., Junior, J. A. & Chiari-Andréo, B. G. (2016). Influência do material de embalagem na estabilidade de formulação cosmética contendo vitamina c. Revista UNIARA, 19(2), 38-52.
Santos, E. H. F., Figueiredo Neto, A. & Donzeli, V. P. (2016). Aspectos físico-químicos e microbiológicos de polpas de frutas comercializadas em Petrolina (PE) e Juazeiro (BA). Brazilian Journal of Food Technology, 19, e2015089. Epub September 01, 2016.
Sapei, L. & Hwa, L. (2014). Study on the Kinetics of Vitamin C Degradation in Fresh Strawberry Juices. Procedia Chemistry, 9, 62–68.
Sartori, C.J. (2012). Avaliação dos teores de compostos fenólicos nas cascas de Anadenanthera peregrina (angico-vermelho). Lavras : UFLA.
Serpen, A. & Gökmen, V. (2007). Reversible degradation kinetics of ascorbic acid under reducing and oxidizing conditions. Food Chemistry, 104(2), 721–725.
Taiz, L. & Zeiger, E. (2017). Fisiologia vegetal. 5. ed. Porto Alegre: Artmed, (918).
Tsaniklidis, G., Delis, C., Nikoloudakis, N., Katinakis, P. & Aivalakis, G. (2014). Low temperature storage affects the ascorbic acid metabolism of cherry tomato fruits. Plant Physiology and Biochemistry, 84, 149–157.
Uddin, M., Hawlader, M. N., Ding, L. & Mujumdar, A. (2002). Degradation of ascorbic acid in dried guava during storage. Journal of Food Engineering, 51(1), 21–26.
Valdramidis, V. P., Cullen, P. J., Tiwari, B. K. & O’Donnell, C. P. (2010). Quantitative modelling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. Journal of Food Engineering, 96(3), 449–454.
Vergara, L. P., Reissig, G. N., Franzon, R. C., Rodrigues, R. S. & Chim, J. F. (2018). Bioactive compound retention in frozen red and yellow Strawberry guava pulps added with L-Ascorbic acid. Revista Brasileira de Fruticultura, 40(6), e-032. Epub November 14.
Vieites, R. L., Evangelista, R. M., Silva, C. D. S. & Martins, M. L. (2006). Conservação do morango armazenado em atmosfera modificada. Semina: Ciências Agrárias, 27(2), 243.
Woisky, R. & Salatino, A. (1998). Analysis of propolis: some parameters and procedures for chemical quality control. Journal of Apicultural Research, 37(2), 99-105.
Zhou, J., Wang, G. & Liu, Z. (2018). Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnology Journal. 16(11),1868-1877.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.