Co-production of blaNDM-1 and blaOXA-23 in multiresistant clinical isolates of Acinetobacter baumannii from Brazil
DOI:
https://doi.org/10.33448/rsd-v11i9.31253Keywords:
Acinetobacter baumannii; blaNDM-1 ; blaOXA-23.Abstract
Acinetobacter baumannii is a common and dangerous non-fermenting gram-negative bacillus due to its various and increasing resistance mechanisms. Therefore, the objective of the work was to describe four NDM-1 -producing Acinetobacter isolates from Natal, northeastern Brazil. These four isolates were identified as Acinetobacter baumannii by MALDI-TOF. All isolates were characterized by antimicrobial susceptibility testing, with resistance to all β-lactams including carbapenems and positive for the synergy test with Ethylenediaminetetraacetic acid. PCR analysis was also performed for blaNDM-1, blaVIM-1, blaIMP-1, blaOXA-23, blaOXA-24/40, blaOXA-51, blaOXA-58, and blaOXA-143 genes and showed positive for the blaNDM-1 and blaOXA-23 genes in all isolates and this result was confirmed by sequencing. This is the first case of Acinetobacter baumannii strains harboring blaNDM-1 gene isolated from northeastern Brazil. This description emphasizes the need for new prevention and control strategies of the dissemination of NDM-1-producing Acinetobacter, which are associated with a high mortality rate.
References
Adams, M. D., Pasteran, F., Traglia, G. M., Martinez, J., Huang, F., et al. (2020). Distinct mechanisms of dissemination of NDM-1 metallo-β-lactamase in Acinetobacter species in Argentina. Antimicrobial agents and chemotherapy, 64(5), e00324-20. 10.1128/AAC.00324-20.
Bonnin, R. A., Poirel, L., & Nordmann, P. (2014). New Delhi metallo-β-lactamase-producing Acinetobacter baumannii: a novel paradigm for spreading antibiotic resistance genes. Future microbiology, 9(1), 33-41. 10.2217/fmb.13.69.
Chatterjee, S., Datta, S., Roy, S., Ramanan, L., Saha, A., et al. (2016). Carbapenem resistance in Acinetobacter baumannii and other Acinetobacter spp. causing neonatal sepsis: focus on NDM-1 and its linkage to ISAba125. Frontiers in microbiology, 7, 1126. 10.3389/fmicb.2016.01126.
CLSI. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3rd ed. CLSI guideline M45. Wayne, PA: Clinical and laboratotry Standard Institute; 2015.
Dortet, L., Nordmann, P., & Poirel, L. (2012). Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrobial agents and chemotherapy, 56(4), 1693-1697. 10.1128/AAC.05583-11.
FDA, “FDA-Identified Interpretive Criteria,” Tigecycline – Injection products, 2017. https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/ucm587585.htm.
Fernández-Cuenca, F., Pérez-Palacios, P., Galán-Sánchez, F., López-Cerero, L., López-Hernández, I., et al. First identification of blaNDM-1 carbapenemase in blaOXA-94-producing Acinetobacter baumannii ST85 in Spain. Enfermedades infecciosas y microbiologia clinica (English ed.), 38(1), 11-15. 10.1016/j.eimce.2019.03.013.
Furlan, J. P. R., Pitondo-Silva, A., & Stehling, E. G. (2018). Detection of bla NDM-1 in Stenotrophomonas maltophilia isolated from Brazilian soil. Memórias do Instituto Oswaldo Cruz, 113. 10.1590/0074-02760170558.
Héritier, C., Poirel, L., Lambert, T., & Nordmann, P. (2005). Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrobial agents and chemotherapy, 49(8), 3198-3202. 10.1128/AAC.49.8.3198.
Higgins, P. G., Poirel, L., Lehmann, M., Nordmann, P., & Seifert, H. (2009). OXA-143, a novel carbapenem-hydrolyzing class D β-lactamase in Acinetobacter baumannii. Antimicrobial agents and chemotherapy, 53(12), 5035-5038. 10.1128/AAC.00856-09.
Joshi, P. R., Acharya, M., Kakshapati, T., Leungtongkam, U., Thummeepak, R., & Sitthisak, S. (2017). Co-existence of bla OXA-23 and bla NDM-1 genes of Acinetobacter baumannii isolated from Nepal: antimicrobial resistance and clinical significance. Antimicrobial Resistance & Infection Control, 6(1), 1-7. 10.1186/s13756-017-0180-5.
Khan, A. U., Maryam, L., & Zarrilli, R. (2017). Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC microbiology, 17(1), 1-12. 10.1186/s12866-017-1012-8.
Kumari, M., Verma, S., Venkatesh, V., Gupta, P., Tripathi, P., et al. (2021). Emergence of blaNDM-1 and blaVIM producing Gram-negative bacilli in ventilator-associated pneumonia at AMR Surveillance Regional Reference Laboratory in India. Plos one, 16(9), e0256308. 10.1371/journal.pone.0256308.
Pagano, M., Poirel, L., Martins, A. F., Rozales, F. P., Zavascki, A. P., Barth, A. L., & Nordmann, P. (2015). Emergence of NDM-1-producing Acinetobacter pittii in Brazil. International journal of antimicrobial agents, 45(4), 444-445. 10.1016/j.ijantimicag.2014.12.011.
Pasteran, F., Mora, M. M., Albornoz, E., Faccone, D., Franco, R., et al. (2014). Emergence of genetically unrelated NDM-1-producing Acinetobacter pittii strains in Paraguay. Journal of Antimicrobial Chemotherapy, 69(9), 2575-2578. 10.1093/jac/dku139.
Pillonetto, M., Arend, L., Vespero, E. C., Pelisson, M., Chagas, T. P. G., Carvalho-Assef, A. P. D. A., & Asensi, M. D. (2014). First report of NDM-1-producing Acinetobacter baumannii sequence type 25 in Brazil. Antimicrobial agents and chemotherapy, 58(12), 7592-7594. 10.1128/AAC.03444-14.
Poirel, L., Naas, T., & Nordmann, P. (2010). Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrobial agents and chemotherapy, 54(1), 24-38. 10.1128/AAC.01512-08.
Poirel, L., Walsh, T. R., Cuvillier, V., & Nordmann, P. (2011). Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic microbiology and infectious disease, 70(1), 119-123. 10.1016/j.diagmicrobio.2010.12.002.
Rozales, F. P., Ribeiro, V. B., Magagnin, C. M., Pagano, M., Lutz, L., Falci, D. R., & Zavascki, A. P. (2014). Emergence of NDM-1-producing Enterobacteriaceae in Porto Alegre, Brazil. International Journal of Infectious Diseases, 25, 79-81.10.1016/j.ijid.2014.01.005.
Tran, D. N., Tran, H. H., Matsui, M., Suzuki, M., Suzuki, S., et al. (2017). Emergence of New Delhi metallo-beta-lactamase 1 and other carbapenemase-producing Acinetobacter calcoaceticus-baumannii complex among patients in hospitals in Ha Noi, Viet Nam. European Journal of Clinical Microbiology & Infectious Diseases, 36(2), 219-225. 10.1007/s10096-016-2784-8.
Woodford, N., Ellington, M. J., Coelho, J. M., Turton, J. F., Ward, M. E., Brown, S., & Livermore, D. M. (2006). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International journal of antimicrobial agents, 27(4), 351-353. 10.1016/j.ijantimicag.2006.01.004.
Yong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, K., & Walsh, T. R. (2009). Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial agents and chemotherapy, 53(12), 5046-5054. 10.1128/AAC.00774-09.
Zenati, K., Touati, A., Bakour, S., Sahli, F., & Rolain, J. M. (2016). Characterization of NDM-1-and OXA-23-producing Acinetobacter baumannii isolates from inanimate surfaces in a hospital environment in Algeria. Journal of Hospital Infection, 92(1), 19-26. 10.1016/j.jhin.2015.09.020.
Zhang, C., Qiu, S., Wang, Y., Qi, L., Hao, R., et al. (2013). Higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals in Beijing. PloS one, 8(6), e64857. 10.1371/journal.pone.0064857.
Zhang, R., Hu, Y. Y., Yang, X. F., Gu, D. X., Zhou, H. W., Hu, Q. F., & Chen, G. X. (2014). Emergence of NDM-producing non-baumannii Acinetobacter spp. isolated from China. European journal of clinical microbiology & infectious diseases, 33(5), 853-860. 10.1007/s10096-013-2024-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Maria Carolina Soares Lopes; Bruna Helena Silva Rendall Évora ; Claúdio Bruno Silva de Oliveira ; Emília Sousa de Oliveira; Maria Celeste Nunes de Melo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.