Therapeutic potential of flavonoid-rich plants in the treatment of arterial hypertension and diabetes mellitus: focus on antioxidant role
DOI:
https://doi.org/10.33448/rsd-v11i8.31364Keywords:
Medical plants; Antioxidants; Flavonoids; Hypertension; Diabetes Mellitus.Abstract
Introduction: Chronic non-communicable diseases are the main causes of morbidity and mortality today, among them, Arterial Hypertension (SAH) and Type 2 Diabetes Mellitus (T2DM), which are responsible for a variety of systemic complications. Both conditions share, in their pathophysiology, the state of oxidative stress, justifying the possible use of antioxidant components, such as flavonoids. Objectives: To characterize and describe the therapeutic potential of the main medicinal plants of popular use, rich in flavonoid-type antioxidant constituents, in the treatment of hypertension and diabetes. Methodology: An integrative literature review study, developed from a survey in PubMed, MEDLINE and LILACS databases. Results: From the survey, the following plants used for hypertension stood out: Hibiscus sabdariffa, Allium sativum L., Phyllathus amarus, Ginkgo biloba and Matricaria chamomilla. As for diabetes, the following stand out: Syzygium cumini L., Caesalpinia sappan, Andrographis paniculata and Curcuma longa L. Conclusion: The results showed that the use of medicinal plants rich in flavonoids can serve as an important ally in the prevention, control and treatment. of SAH and T2DM, acting mainly against the state of oxidative stress, a common pathophysiological mechanism in both diseases, and thus preventing the occurrence of complications resulting from this state.
References
Abdel-Zaher, A. O., Farghaly, H. S. M., El-Refaiy, A. E. M., & Abd-Eldayem, A. M. (2018). Protective effect of the standardized leaf extract of Ginkgo biloba (EGb761) against hypertension-induced renal injury in rats. Clinical and Experimental Hypertension, 40(8), 703–714. https://doi.org/10.1080/10641963.2018.1425421
Adab, Z., Eghtesadi, S., Vafa, M., Heydari, I., Shojaii, A., Haqqani, H., & Eghtesadi, M. (2019). Effect of turmeric on glycemic status, lipid profile, hs‐CRP, and total antioxidant capacity in hyperlipidemic type 2 diabetes mellitus patients. Phytotherapy Research, 33(4), 1173–1181. https://doi.org/10.1002/ptr.6312
Adnan, Md., Jeon, B.-B., Chowdhury, Md. H. U., Oh, K.-K., Das, T., Chy, Md. N. U., & Cho, D.-H. (2022). Network Pharmacology Study to Reveal the Potentiality of a Methanol Extract of Caesalpinia sappan L. Wood against Type-2 Diabetes Mellitus. Life, 12(2), 277. https://doi.org/10.3390/life12020277
Agashe, S., & Petak, S. (2018). Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist DeBakey Cardiovascular Journal, 14(4), 251. https://doi.org/10.14797/mdcj-14-4-251
Akhtar, M., Bin Mohd Sarib, M., Ismail, I., Abas, F., Ismail, A., Lajis, N., & Shaari, K. (2016). Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats. Molecules, 21(8), 1026. https://doi.org/10.3390/molecules21081026
Al-Anbaki, M., Nogueira, R. C., Cavin, A.-L., Al-Hadid, M., Al-Ajlouni, I., Shuhaiber, L., & Graz, B. (2019). Treating Uncontrolled Hypertension with Hibiscus sabdariffa When Standard Treatment Is Insufficient: Pilot Intervention. The Journal of Alternative and Complementary Medicine, 25(12), 1200–1205. https://doi.org/10.1089/acm.2019.0220
Al-awar, A., Kupai, K., Veszelka, M., Szűcs, G., Attieh, Z., Murlasits, Z., & Varga, C. (2016). Experimental Diabetes Mellitus in Different Animal Models. Journal of Diabetes Research, 2016, 1–12. https://doi.org/10.1155/2016/9051426
Anandharajan, R., Jaiganesh, S., Shankernarayanan, N. P., Viswakarma, R. A., & Balakrishnan, A. (2006). In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPARγ in L6 myotubes. Phytomedicine, 13(6), 434–441. https://doi.org/10.1016/j.phymed.2005.03.008
Awaad, A. A., El-Meligy, R. M., Zain, G. M., Safhi, A. A., AL Qurain, N. A., Almoqren, S. S., & Al-Saikhan, F. I. (2018). Experimental and clinical antihypertensive activity of Matricaria chamomilla extracts and their angiotensin-converting enzyme inhibitory activity. Phytotherapy Research, 32(8), 1564–1573. https://doi.org/10.1002/ptr.6086
Ayyanar, M., & Subash-Babu, P. (2012). Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pacific Journal of Tropical Biomedicine, 2(3), 240–246. https://doi.org/10.1016/s2221-1691(12)60050-1
Bahadoran, Z., Mirmiran, P., Momenan, A. A., & Azizi, F. (2017). Allium vegetable intakes and the incidence of cardiovascular disease, hypertension, chronic kidney disease, and type 2 diabetes in adults. Journal of Hypertension, 35(9), 1909–1916. https://doi.org/10.1097/hjh.0000000000001356
Baldissera, G., Sperotto, N. D. M., Rosa, H. T., Henn, J. G., Peres, V. F., Moura, D. J., & Saffi, J. (2016). Effects of crude hydroalcoholic extract of Syzygium cumini (L.) Skeels leaves and continuous aerobic training in rats with diabetes induced by a high-fat diet and low doses of streptozotocin. Journal of Ethnopharmacology, 194, 1012–1021. https://doi.org/10.1016/j.jep.2016.10.056
Bansode, T., Salalkar, B., Dighe, P., Nirmal, S., & Dighe, S. (2017). Comparative evaluation of antidiabetic potential of partially purified bioactive fractions from four medicinal plants in alloxan-induced diabetic rats. AYU (an International Quarterly Journal of Research in Ayurveda), 38(2), 165. https://doi.org/10.4103/ayu.ayu_18_17
Bas, Z., Turkoglu, V., & Goz, Y. (2021). Investigation of inhibition effect of butanol and water extracts of Matricaria chamomilla L. on angiotensin‐converting enzyme purified from human plasma. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/bab.2106
Brinkley, T. E., Lovato, J. F., Arnold, A. M., Furberg, C. D., Kuller, L. H., Burke, G. L., & Williamson, J. D. (2010). Effect of Ginkgo biloba on Blood Pressure and Incidence of Hypertension in Elderly Men and Women. American Journal of Hypertension, 23(5), 528–533. https://doi.org/10.1038/ajh.2010.14
Chauhan, R., Singh, S., Kumar, V., Kumar, A., Kumari, A., Rathore, S., & Singh, S. (2021). A Comprehensive Review on Biology, Genetic Improvement, Agro and Process Technology of German Chamomile (Matricaria chamomilla L.). Plants, 11(1), 29. https://doi.org/10.3390/plants11010029
Chen, C.-Y., Tsai, T.-Y., & Chen, B.-H. (2021). Effects of Black Garlic Extract and Nanoemulsion on the Deoxy Corticosterone Acetate-Salt Induced Hypertension and Its Associated Mild Cognitive Impairment in Rats. Antioxidants, 10(10), 1611. https://doi.org/10.3390/antiox10101611
Cheng, Y.-C., Sheen, J.-M., Hu, W. L., & Hung, Y.-C. (2017). Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. Oxidative Medicine and Cellular Longevity, 2017, 1–16. https://doi.org/10.1155/2017/8526438
Cheung, B. M. Y., & Li, C. (2012). Diabetes and Hypertension: Is There a Common Metabolic Pathway? Current Atherosclerosis Reports, 14(2), 160–166. https://doi.org/10.1007/s11883-012-0227-2
Ciumărnean, L., Milaciu, M. V., Runcan, O., Vesa, Ș. C., Răchișan, A. L., Negrean, V., & Dogaru, G. (2020). The Effects of Flavonoids in Cardiovascular Diseases. Molecules, 25(18), 4320. https://doi.org/10.3390/molecules25184320
Cogolludo, A., Pérez-Vizcaíno, F., & Tamargo, J. (2005). New insights in the pharmacological therapy of arterial hypertension. Current Opinion in Nephrology & Hypertension, 14(5), 423–427. https://doi.org/10.1097/01.mnh.0000168334.09454.1c
Costa, J. M. B. da S., Barreto, M. N. S. de C., Gomes, M. F., Fontbonne, A., & Cesse, E. Â. P. (2020). Avaliação da estrutura das farmácias das Unidades de Saúde da Família para o atendimento aos portadores de hipertensão arterial sistêmica e diabetes mellitus em Pernambuco. Cadernos Saúde Coletiva, 28(4), 609–618. https://doi.org/10.1590/1414-462x202028040243
Dai, Y., Chen, S.-R., Chai, L., Zhao, J., Wang, Y., & Wang, Y. (2018). Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Critical Reviews in Food Science and Nutrition, 59(sup1), S17–S29. https://doi.org/10.1080/10408398.2018.1501657
Dinda, B., Dinda, M., Roy, A., & Dinda, S. (2020). Dietary plant flavonoids in prevention of obesity and diabetes. Advances in Protein Chemistry and Structural Biology, 159–235. https://doi.org/10.1016/bs.apcsb.2019.08.006
Dinda, B., Dinda, M., Roy, A., & Dinda, S. (2020). Dietary plant flavonoids in prevention of obesity and diabetes. Advances in Protein Chemistry and Structural Biology, 159–235. https://doi.org/10.1016/bs.apcsb.2019.08.006
El-Abhar, H. S., & Schaalan, M. F. (2014). Phytotherapy in diabetes: Review on potential mechanistic perspectives. World Journal of Diabetes, 5(2), 176. https://doi.org/10.4239/wjd.v5.i2.176
Ferrera, T. S., Heldwein, A. B., Dos Santos, C. O., Somavilla, J. C., & Sautter, C. K. (2016). Substâncias fenólicas, flavonoides e capacidade antioxidante em erveiras sob diferentes coberturas do solo e sombreamentos. Revista Brasileira de Plantas Medicinais, 18(2 suppl 1), 588–596. https://doi.org/10.1590/1983-084x/15_197
Flack, J. M., & Adekola, B. (2020). Blood pressure and the new ACC/AHA hypertension guidelines. Trends in Cardiovascular Medicine, 30(3), 160–164. https://doi.org/10.1016/j.tcm.2019.05.003
Gandhi, G. R., Vasconcelos, A. B. S., Wu, D.-T., Li, H.-B., Antony, P. J., Li, H., & Gan, R.-Y. (2020). Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Nutrients, 12(10), 2907. https://doi.org/10.3390/nu12102907
Ghiasi, S., Jalalyazdi, M., Ramezani, J., Izadi-Moud, A., Madani-Sani, F., & Shahlaei, S. (2019). Effect of hibiscus sabdariffa on blood pressure in patients with stage 1 hypertension. Journal of Advanced Pharmaceutical Technology & Research, 10(3), 107. https://doi.org/10.4103/japtr.japtr_402_18
Gibbs, J., Gaskin, E., Ji, C., Miller, M. A., & Cappuccio, F. P. (2020). The effect of plant-based dietary patterns on blood pressure: a systematic review and meta-analysis of controlled intervention trials. Journal of Hypertension, 39(1), 23–37. https://doi.org/10.1097/hjh.0000000000002604
Herrera-Arellano, A., Flores-Romero, S., Chávez-Soto, M. A., & Tortoriello, J. (2004). Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: a controlled and randomized clinical trial. Phytomedicine, 11(5), 375–382. https://doi.org/10.1016/j.phymed.2004.04.001
Hidayat, R., & Wulandari, P. (2021). Effects of Andrographis paniculata (Burm. F.) Extract on Diabetic Nephropathy in Rats. Reports of Biochemistry and Molecular Biology, 10(3), 445–454. https://doi.org/10.52547/rbmb.10.3.445
Hopkins, A. L., Lamm, M. G., Funk, J. L., & Ritenbaugh, C. (2013). Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: A comprehensive review of animal and human studies. Fitoterapia, 85, 84–94. https://doi.org/10.1016/j.fitote.2013.01.003
Hügel, H. M., Jackson, N., May, B., Zhang, A. L., & Xue, C. C. (2016). Polyphenol protection and treatment of hypertension. Phytomedicine, 23(2), 220–231. https://doi.org/10.1016/j.phymed.2015.12.012
Jaiyesimi, K. F., Agunbiade, O. S., Ajiboye, B. O., & Afolabi, O. B. (2020). Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat. Journal of Diabetes & Metabolic Disorders, 19(2), 1543–1556. https://doi.org/10.1007/s40200-020-00690-2
Kanter, J. E., & Bornfeldt, K. E. (2016). Impact of Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(6), 1049–1053. https://doi.org/10.1161/atvbaha.116.307302
Karlowicz-Bodalska K; Han S; Freier J; Smolenski M; & Bodalska A. (2017). Curcuma Longa As Medicinal Herb In The Treatment Of Diabet- IC COMPLICATIONS. Acta Poloniae Pharmaceutica, 74(2). https://pubmed.ncbi.nlm.nih.gov/29624265/
Liang, E., Liu, X., Du, Z., Yang, R., & Zhao, Y. (2018). Andrographolide Ameliorates Diabetic Cardiomyopathy in Mice by Blockage of Oxidative Damage and NF-κB-Mediated Inflammation. Oxidative Medicine and Cellular Longevity, 2018, 1–13. https://doi.org/10.1155/2018/9086747
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, Volume 13, 757–772. https://doi.org/10.2147/cia.s158513
Malta, D. C., Stopa, S. R., Szwarcwald, C. L., Gomes, N. L., Silva Júnior, J. B., & Reis, A. A. C. dos. (2015). A vigilância e o monitoramento das principais doenças crônicas não transmissíveis no Brasil - Pesquisa Nacional de Saúde, 2013. Revista Brasileira de Epidemiologia, 18(suppl 2), 3–16. https://doi.org/10.1590/1980-5497201500060002
Martín, M. Á., & Ramos, S. (2021). Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells, 10(6), 1474. https://doi.org/10.3390/cells10061474
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Mota, M., Marques-Vieira, C., Severino, S., & Antunes, V. (2017). Metodologia de Revisão Integrativa da Literatura em Enfermagem. ResearchGate; unknown. https://www.researchgate.net/publication/321319742_Metodologia_de_Revisao_Integrativa_da_Literatura_em_Enfermagem
Neves, R. G., Duro, S. M. S., Nunes, B. P., Facchini, L. A., & Tomasi, E. (2021). Atenção à saúde de pessoas com diabetes e hipertensão no Brasil: estudo transversal do Programa de Melhoria do Acesso e da Qualidade da Atenção Básica, 2014. Epidemiologia E Serviços de Saúde, 30(3). https://doi.org/10.1590/s1679-49742021000300015
Noone, C., Dwyer, C. P., Murphy, J., Newell, J., & Molloy, G. J. (2018). Comparative effectiveness of physical activity interventions and anti-hypertensive pharmacological interventions in reducing blood pressure in people with hypertension: protocol for a systematic review and network meta-analysis. Systematic Reviews, 7(1). https://doi.org/10.1186/s13643-018-0791-9
Nugroho, A., Warditiani, N., Pramono, S., Andrie, M., Siswanto, E., & Lukitaningsih, E. (2012). Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian Journal of Pharmacology, 44(3), 377. https://doi.org/10.4103/0253-7613.96343
Ogunmoyole, T., Awodooju, M., Idowu, S., & Daramola, O. (2020). Phyllanthus amarus extract restored deranged biochemical parameters in rat model of hepatotoxicity and nephrotoxicity. Heliyon, 6(12), e05670. https://doi.org/10.1016/j.heliyon.2020.e05670
Páez, M. T., Rodríguez, D. C., López, D. F., Castañeda, J. A., Buitrago, D. M., Cuca, L. E., & Guerrero, M. F. (2013). Croton schiedeanus Schltd prevents experimental hypertension in rats induced by nitric oxide deficit. Brazilian Journal of Pharmaceutical Sciences, 49(4), 865–871. https://doi.org/10.1590/s1984-82502013000400027
Park, H.-J., & Kim, M.-M. (2014). Flavonoids in Ginkgo biloba fallen leaves induce apoptosis through modulation of p53 activation in melanoma cells. Oncology Reports, 33(1), 433–438. https://doi.org/10.3892/or.2014.3602
Patel, J. R., Tripathi, P., Sharma, V., Chauhan, N. S., & Dixit, V. K. (2011). Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. Journal of Ethnopharmacology, 138(2), 286–313. https://doi.org/10.1016/j.jep.2011.09.040
Petrie, J. R., Guzik, T. J., & Touyz, R. M. (2018). Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Canadian Journal of Cardiology, 34(5), 575–584. https://doi.org/10.1016/j.cjca.2017.12.005
Qamar, M., Akhtar, S., Ismail, T., Wahid, M., Abbas, M. W., Mubarak, M. S., & Esatbeyoglu, T. (2022). Phytochemical Profile, Biological Properties, and Food Applications of the Medicinal Plant Syzygium cumini. Foods, 11(3), 378. https://doi.org/10.3390/foods11030378
Rajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E. N., Lakshminarasaiah, U., & Nishigaki, I. (2014). Antioxidants and human diseases. Clinica Chimica Acta, 436, 332–347. https://doi.org/10.1016/j.cca.2014.06.004
Ramkumar, S., Thulasiram, H. V., & RaviKumar, A. (2021). Improvement in serum amylase and glucose levels in diabetic rats on oral administration of bisdemethoxycurcumin from Curcuma longa and limonoids from Azadirachta indica. Journal of Food Biochemistry, 45(4). https://doi.org/10.1111/jfbc.13674
Rees, A., Dodd, G., & Spencer, J. (2018). The Effects of Flavonoids on Cardiovascular Health: A Review of Human Intervention Trials and Implications for Cerebrovascular Function. Nutrients, 10(12), 1852. https://doi.org/10.3390/nu1012185
Ried, K. (2016). Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review. The Journal of Nutrition, 146(2), 389S396S. https://doi.org/10.3945/jn.114.202192
Ried, K., & Fakler, P. (2014). Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Integrated Blood Pressure Control, 71. https://doi.org/10.2147/ibpc.s51434
Ried, K., Frank, O. R., & Stocks, N. P. (2012). Aged garlic extract reduces blood pressure in hypertensives: a dose–response trial. European Journal of Clinical Nutrition, 67(1), 64–70. https://doi.org/10.1038/ejcn.2012.178
Rosario, V. A., Schoenaker, D. A. J. M., Kent, K., Weston-Green, K., & Charlton, K. (2020). Association between flavonoid intake and risk of hypertension in two cohorts of Australian women: a longitudinal study. European Journal of Nutrition, 60(5), 2507–2519. https://doi.org/10.1007/s00394-020-02424-9
Sen, T., & Samanta, S. K. (2014). Medicinal Plants, Human Health and Biodiversity: A Broad Review. Biotechnological Applications of Biodiversity, 59–110. https://doi.org/10.1007/10_2014_273
Senoner, T., & Dichtl, W. (2019). Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients, 11(9), 2090. https://doi.org/10.3390/nu11092090
Serban, C., Sahebkar, A., Ursoniu, S., Andrica, F., & Banach, M. (2015). Effect of sour tea (Hibiscus sabdariffa L.) on arterial hypertension. Journal of Hypertension, 33(6), 1119–1127. https://doi.org/10.1097/hjh.0000000000000585
Setyaningsih, F. Saputri, & A. Mun'im. (2019). The Antidiabetic Effectivity of Indonesian Plants Extracts via DPP-IV Inhibitory Mechanism. Undefined; https://www.semanticscholar.org/paper/The-Antidiabetic-Effectivity-of-Indonesian-Plants-Setyaningsih-Saputri/490cce5165d54db33633c8ed2233086eb3d2462c
Shaito, A., Thuan, D. T. B., Phu, H. T., Nguyen, T. H. D., Hasan, H., Halabi, S., & Pintus, G. (2020). Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.00422
Souza, M. T. de, Silva, M. D. da, & Carvalho, R. de. (2010). Integrative review: what is it? How to do it? Einstein (São Paulo), 8(1), 102–106. https://doi.org/10.1590/s1679-45082010rw1134
Silva, MVB., Vitória, B., Sales, S., Antonio, C., Aline, Lopes, G., & Amanda. (2022). Caracterização do perfil epidemiológico da mortalidade por doenças cardiovasculares no Brasil: um estudo descritivo. Enfermagem Brasil, 21(2), 154–165. https://doi.org/10.33233/eb.v21i2.5030
Srividya N;Periwal S. (2019). Diuretic, hypotensive and hypoglycaemic effect of Phyllanthus amarus. Indian Journal of Experimental Biology, 33(11). https://pubmed.ncbi.nlm.nih.gov/8786163/
Syamsunarno, M. R. A., Safitri, R., & Kamisah, Y. (2021). Protective Effects of Caesalpinia sappan Linn. and Its Bioactive Compounds on Cardiovascular Organs. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.725745
Thota, R. N., Acharya, S. H., & Garg, M. L. (2019). Curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: a randomised controlled trial. Lipids in Health and Disease, 18(1). https://doi.org/10.1186/s12944-019-0967-x
Tschiedel, B. (2014). Complicações crônicas do diabetes. 102. Retrieved from http://files.bvs.br/upload/S/0047-2077/2014/v102n5/a4502.pdf
Uddin, G. M., Kim, C. Y., Chung, D., Kim, K.-A., & Jung, S. H. (2015). One-step isolation of sappanol and brazilin from Caesalpinia sappan and their effects on oxidative stress-induced retinal death. BMB Reports, 48(5), 289–294. https://doi.org/10.5483/bmbrep.2015.48.5.189
Wediasari, F., Nugroho, G. A., Fadhilah, Z., Elya, B., Setiawan, H., & Mozef, T. (2020). Hypoglycemic Effect of a Combined Andrographis paniculata and Caesalpinia sappan Extract in Streptozocin-Induced Diabetic Rats. Advances in Pharmacological and Pharmaceutical Sciences, 2020, 1–9. https://doi.org/10.1155/2020/8856129
World Health Organization. (2021). Guideline for the pharmacological treatment of hypertension in adults. https://apps.who.int/iris/bitstream/handle/10665/344424/9789240033986-eng.pdf
World Health Organization. World Health Organization; France: 2016. Global Report on Diabetes WHO. (2016). Global Report On Diabetes. https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf
Xiong, X. J., Liu, W., Yang, X. C., Feng, B., Zhang, Y. Q., Li, S. J., & Wang, J. (2014). Ginkgo biloba extract for essential hypertension: A systemic review. Phytomedicine, 21(10), 1131–1136. https://doi.org/10.1016/j.phymed.2014.04.024
Yao, A. N., Kamagaté, M., Amonkan, A. K., Chabert, P., Kpahé, F., Koffi, C., & Die-Kakou, H. (2018). The acute diuretic effect of an ethanolic fraction of Phyllanthus amarus (Euphorbiaceae) in rats involves prostaglandins. BMC Complementary and Alternative Medicine, 18(1). https://doi.org/10.1186/s12906-018-2158-0
Yao, N. A., Niazi, Z. R., Najmanová, I., Kamagaté, M., Said, A., Chabert, P., & Schini-Kerth, V. (2020). Preventive Beneficial Effect of an Aqueous Extract of Phyllanthus amarus Schum. and Thonn. (Euphorbiaceae) on DOCA-Salt–Induced Hypertension, Cardiac Hypertrophy and Dysfunction, and Endothelial Dysfunction in Rats. Journal of Cardiovascular Pharmacology, 75(6), 573–583. https://doi.org/10.1097/fjc.0000000000000825
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Matheus Vinicius Barbosa da Silva; Gleyciele dos Santos Barbosa; Alisson Carlos da Rocha; Diego da Rocha; Thais Ana da Silva; Jackson Alves da Silva; Alyssa Castelo Branco Alencar Andrade; Bruna Bezerra Pimentel Andrade; Francisco Antonio da Cruz dos Santos; Jonas Laerte Longen Junior; Heverton Valentim Colaço da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.