Potencial terapêutico de plantas ricas em flavonoides no tratamento da Hipertensão Arterial e do Diabetes Mellitus: foco no papel antioxidante
DOI:
https://doi.org/10.33448/rsd-v11i8.31364Palavras-chave:
Plantas medicinais; Hipertensão; Antioxidantes; Flavonoides; Diabetes Mellitus.Resumo
Introdução: As doenças crônicas não transmissíveis configuram-se como as principais causas de morbimortalidade na atualidade, entre elas destacam-se a Hipertensão Arterial (HAS) e o Diabetes Mellitus tipo 2 (DM2), as quais são responsáveis por uma variedade de complicações sistêmicas. Ambas as condições compartilham entre si, na sua fisiopatologia, o estado de estresse oxidativo, justificando o possível uso de componentes antioxidantes, como os flavonoides. Objetivos: Caracterizar e descrever o potencial terapêutico das principais plantas medicinais de uso popular ricas em constituintes antioxidantes do tipo flavonoides, no tratamento da hipertensão e diabetes. Metodologia: Estudo de revisão integrativa da literatura, desenvolvida a partir do levantamento nas bases de dados PubMed, MEDLINE e LILACS. Resultados: A partir do levantamento, destacaram-se como plantas utilizadas para a hipertensão: Hibiscus sabdariffa, Allium sativum L., Phyllathus amarus, Ginkgo biloba e Matricaria chamomilla. Enquanto para o diabetes, destacaram-se: Syzygium cumini L., Caesalpinia Sappan, Andrographis paniculata e Curcuma Longa L. Conclusão: Os resultados mostraram que o uso de plantas medicinais ricas em flavonoides pode servir como um importante aliado na prevenção, controle e tratamento da HAS e do DM2, atuando principalmente frente ao estado de estresse oxidativo, mecanismo fisiopatológico comum em ambas as doenças, e dessa forma previne a ocorrência de complicações decorrentes deste estado.
Referências
Abdel-Zaher, A. O., Farghaly, H. S. M., El-Refaiy, A. E. M., & Abd-Eldayem, A. M. (2018). Protective effect of the standardized leaf extract of Ginkgo biloba (EGb761) against hypertension-induced renal injury in rats. Clinical and Experimental Hypertension, 40(8), 703–714. https://doi.org/10.1080/10641963.2018.1425421
Adab, Z., Eghtesadi, S., Vafa, M., Heydari, I., Shojaii, A., Haqqani, H., & Eghtesadi, M. (2019). Effect of turmeric on glycemic status, lipid profile, hs‐CRP, and total antioxidant capacity in hyperlipidemic type 2 diabetes mellitus patients. Phytotherapy Research, 33(4), 1173–1181. https://doi.org/10.1002/ptr.6312
Adnan, Md., Jeon, B.-B., Chowdhury, Md. H. U., Oh, K.-K., Das, T., Chy, Md. N. U., & Cho, D.-H. (2022). Network Pharmacology Study to Reveal the Potentiality of a Methanol Extract of Caesalpinia sappan L. Wood against Type-2 Diabetes Mellitus. Life, 12(2), 277. https://doi.org/10.3390/life12020277
Agashe, S., & Petak, S. (2018). Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist DeBakey Cardiovascular Journal, 14(4), 251. https://doi.org/10.14797/mdcj-14-4-251
Akhtar, M., Bin Mohd Sarib, M., Ismail, I., Abas, F., Ismail, A., Lajis, N., & Shaari, K. (2016). Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats. Molecules, 21(8), 1026. https://doi.org/10.3390/molecules21081026
Al-Anbaki, M., Nogueira, R. C., Cavin, A.-L., Al-Hadid, M., Al-Ajlouni, I., Shuhaiber, L., & Graz, B. (2019). Treating Uncontrolled Hypertension with Hibiscus sabdariffa When Standard Treatment Is Insufficient: Pilot Intervention. The Journal of Alternative and Complementary Medicine, 25(12), 1200–1205. https://doi.org/10.1089/acm.2019.0220
Al-awar, A., Kupai, K., Veszelka, M., Szűcs, G., Attieh, Z., Murlasits, Z., & Varga, C. (2016). Experimental Diabetes Mellitus in Different Animal Models. Journal of Diabetes Research, 2016, 1–12. https://doi.org/10.1155/2016/9051426
Anandharajan, R., Jaiganesh, S., Shankernarayanan, N. P., Viswakarma, R. A., & Balakrishnan, A. (2006). In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPARγ in L6 myotubes. Phytomedicine, 13(6), 434–441. https://doi.org/10.1016/j.phymed.2005.03.008
Awaad, A. A., El-Meligy, R. M., Zain, G. M., Safhi, A. A., AL Qurain, N. A., Almoqren, S. S., & Al-Saikhan, F. I. (2018). Experimental and clinical antihypertensive activity of Matricaria chamomilla extracts and their angiotensin-converting enzyme inhibitory activity. Phytotherapy Research, 32(8), 1564–1573. https://doi.org/10.1002/ptr.6086
Ayyanar, M., & Subash-Babu, P. (2012). Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pacific Journal of Tropical Biomedicine, 2(3), 240–246. https://doi.org/10.1016/s2221-1691(12)60050-1
Bahadoran, Z., Mirmiran, P., Momenan, A. A., & Azizi, F. (2017). Allium vegetable intakes and the incidence of cardiovascular disease, hypertension, chronic kidney disease, and type 2 diabetes in adults. Journal of Hypertension, 35(9), 1909–1916. https://doi.org/10.1097/hjh.0000000000001356
Baldissera, G., Sperotto, N. D. M., Rosa, H. T., Henn, J. G., Peres, V. F., Moura, D. J., & Saffi, J. (2016). Effects of crude hydroalcoholic extract of Syzygium cumini (L.) Skeels leaves and continuous aerobic training in rats with diabetes induced by a high-fat diet and low doses of streptozotocin. Journal of Ethnopharmacology, 194, 1012–1021. https://doi.org/10.1016/j.jep.2016.10.056
Bansode, T., Salalkar, B., Dighe, P., Nirmal, S., & Dighe, S. (2017). Comparative evaluation of antidiabetic potential of partially purified bioactive fractions from four medicinal plants in alloxan-induced diabetic rats. AYU (an International Quarterly Journal of Research in Ayurveda), 38(2), 165. https://doi.org/10.4103/ayu.ayu_18_17
Bas, Z., Turkoglu, V., & Goz, Y. (2021). Investigation of inhibition effect of butanol and water extracts of Matricaria chamomilla L. on angiotensin‐converting enzyme purified from human plasma. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/bab.2106
Brinkley, T. E., Lovato, J. F., Arnold, A. M., Furberg, C. D., Kuller, L. H., Burke, G. L., & Williamson, J. D. (2010). Effect of Ginkgo biloba on Blood Pressure and Incidence of Hypertension in Elderly Men and Women. American Journal of Hypertension, 23(5), 528–533. https://doi.org/10.1038/ajh.2010.14
Chauhan, R., Singh, S., Kumar, V., Kumar, A., Kumari, A., Rathore, S., & Singh, S. (2021). A Comprehensive Review on Biology, Genetic Improvement, Agro and Process Technology of German Chamomile (Matricaria chamomilla L.). Plants, 11(1), 29. https://doi.org/10.3390/plants11010029
Chen, C.-Y., Tsai, T.-Y., & Chen, B.-H. (2021). Effects of Black Garlic Extract and Nanoemulsion on the Deoxy Corticosterone Acetate-Salt Induced Hypertension and Its Associated Mild Cognitive Impairment in Rats. Antioxidants, 10(10), 1611. https://doi.org/10.3390/antiox10101611
Cheng, Y.-C., Sheen, J.-M., Hu, W. L., & Hung, Y.-C. (2017). Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. Oxidative Medicine and Cellular Longevity, 2017, 1–16. https://doi.org/10.1155/2017/8526438
Cheung, B. M. Y., & Li, C. (2012). Diabetes and Hypertension: Is There a Common Metabolic Pathway? Current Atherosclerosis Reports, 14(2), 160–166. https://doi.org/10.1007/s11883-012-0227-2
Ciumărnean, L., Milaciu, M. V., Runcan, O., Vesa, Ș. C., Răchișan, A. L., Negrean, V., & Dogaru, G. (2020). The Effects of Flavonoids in Cardiovascular Diseases. Molecules, 25(18), 4320. https://doi.org/10.3390/molecules25184320
Cogolludo, A., Pérez-Vizcaíno, F., & Tamargo, J. (2005). New insights in the pharmacological therapy of arterial hypertension. Current Opinion in Nephrology & Hypertension, 14(5), 423–427. https://doi.org/10.1097/01.mnh.0000168334.09454.1c
Costa, J. M. B. da S., Barreto, M. N. S. de C., Gomes, M. F., Fontbonne, A., & Cesse, E. Â. P. (2020). Avaliação da estrutura das farmácias das Unidades de Saúde da Família para o atendimento aos portadores de hipertensão arterial sistêmica e diabetes mellitus em Pernambuco. Cadernos Saúde Coletiva, 28(4), 609–618. https://doi.org/10.1590/1414-462x202028040243
Dai, Y., Chen, S.-R., Chai, L., Zhao, J., Wang, Y., & Wang, Y. (2018). Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Critical Reviews in Food Science and Nutrition, 59(sup1), S17–S29. https://doi.org/10.1080/10408398.2018.1501657
Dinda, B., Dinda, M., Roy, A., & Dinda, S. (2020). Dietary plant flavonoids in prevention of obesity and diabetes. Advances in Protein Chemistry and Structural Biology, 159–235. https://doi.org/10.1016/bs.apcsb.2019.08.006
Dinda, B., Dinda, M., Roy, A., & Dinda, S. (2020). Dietary plant flavonoids in prevention of obesity and diabetes. Advances in Protein Chemistry and Structural Biology, 159–235. https://doi.org/10.1016/bs.apcsb.2019.08.006
El-Abhar, H. S., & Schaalan, M. F. (2014). Phytotherapy in diabetes: Review on potential mechanistic perspectives. World Journal of Diabetes, 5(2), 176. https://doi.org/10.4239/wjd.v5.i2.176
Ferrera, T. S., Heldwein, A. B., Dos Santos, C. O., Somavilla, J. C., & Sautter, C. K. (2016). Substâncias fenólicas, flavonoides e capacidade antioxidante em erveiras sob diferentes coberturas do solo e sombreamentos. Revista Brasileira de Plantas Medicinais, 18(2 suppl 1), 588–596. https://doi.org/10.1590/1983-084x/15_197
Flack, J. M., & Adekola, B. (2020). Blood pressure and the new ACC/AHA hypertension guidelines. Trends in Cardiovascular Medicine, 30(3), 160–164. https://doi.org/10.1016/j.tcm.2019.05.003
Gandhi, G. R., Vasconcelos, A. B. S., Wu, D.-T., Li, H.-B., Antony, P. J., Li, H., & Gan, R.-Y. (2020). Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Nutrients, 12(10), 2907. https://doi.org/10.3390/nu12102907
Ghiasi, S., Jalalyazdi, M., Ramezani, J., Izadi-Moud, A., Madani-Sani, F., & Shahlaei, S. (2019). Effect of hibiscus sabdariffa on blood pressure in patients with stage 1 hypertension. Journal of Advanced Pharmaceutical Technology & Research, 10(3), 107. https://doi.org/10.4103/japtr.japtr_402_18
Gibbs, J., Gaskin, E., Ji, C., Miller, M. A., & Cappuccio, F. P. (2020). The effect of plant-based dietary patterns on blood pressure: a systematic review and meta-analysis of controlled intervention trials. Journal of Hypertension, 39(1), 23–37. https://doi.org/10.1097/hjh.0000000000002604
Herrera-Arellano, A., Flores-Romero, S., Chávez-Soto, M. A., & Tortoriello, J. (2004). Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: a controlled and randomized clinical trial. Phytomedicine, 11(5), 375–382. https://doi.org/10.1016/j.phymed.2004.04.001
Hidayat, R., & Wulandari, P. (2021). Effects of Andrographis paniculata (Burm. F.) Extract on Diabetic Nephropathy in Rats. Reports of Biochemistry and Molecular Biology, 10(3), 445–454. https://doi.org/10.52547/rbmb.10.3.445
Hopkins, A. L., Lamm, M. G., Funk, J. L., & Ritenbaugh, C. (2013). Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: A comprehensive review of animal and human studies. Fitoterapia, 85, 84–94. https://doi.org/10.1016/j.fitote.2013.01.003
Hügel, H. M., Jackson, N., May, B., Zhang, A. L., & Xue, C. C. (2016). Polyphenol protection and treatment of hypertension. Phytomedicine, 23(2), 220–231. https://doi.org/10.1016/j.phymed.2015.12.012
Jaiyesimi, K. F., Agunbiade, O. S., Ajiboye, B. O., & Afolabi, O. B. (2020). Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat. Journal of Diabetes & Metabolic Disorders, 19(2), 1543–1556. https://doi.org/10.1007/s40200-020-00690-2
Kanter, J. E., & Bornfeldt, K. E. (2016). Impact of Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(6), 1049–1053. https://doi.org/10.1161/atvbaha.116.307302
Karlowicz-Bodalska K; Han S; Freier J; Smolenski M; & Bodalska A. (2017). Curcuma Longa As Medicinal Herb In The Treatment Of Diabet- IC COMPLICATIONS. Acta Poloniae Pharmaceutica, 74(2). https://pubmed.ncbi.nlm.nih.gov/29624265/
Liang, E., Liu, X., Du, Z., Yang, R., & Zhao, Y. (2018). Andrographolide Ameliorates Diabetic Cardiomyopathy in Mice by Blockage of Oxidative Damage and NF-κB-Mediated Inflammation. Oxidative Medicine and Cellular Longevity, 2018, 1–13. https://doi.org/10.1155/2018/9086747
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, Volume 13, 757–772. https://doi.org/10.2147/cia.s158513
Malta, D. C., Stopa, S. R., Szwarcwald, C. L., Gomes, N. L., Silva Júnior, J. B., & Reis, A. A. C. dos. (2015). A vigilância e o monitoramento das principais doenças crônicas não transmissíveis no Brasil - Pesquisa Nacional de Saúde, 2013. Revista Brasileira de Epidemiologia, 18(suppl 2), 3–16. https://doi.org/10.1590/1980-5497201500060002
Martín, M. Á., & Ramos, S. (2021). Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells, 10(6), 1474. https://doi.org/10.3390/cells10061474
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Mota, M., Marques-Vieira, C., Severino, S., & Antunes, V. (2017). Metodologia de Revisão Integrativa da Literatura em Enfermagem. ResearchGate; unknown. https://www.researchgate.net/publication/321319742_Metodologia_de_Revisao_Integrativa_da_Literatura_em_Enfermagem
Neves, R. G., Duro, S. M. S., Nunes, B. P., Facchini, L. A., & Tomasi, E. (2021). Atenção à saúde de pessoas com diabetes e hipertensão no Brasil: estudo transversal do Programa de Melhoria do Acesso e da Qualidade da Atenção Básica, 2014. Epidemiologia E Serviços de Saúde, 30(3). https://doi.org/10.1590/s1679-49742021000300015
Noone, C., Dwyer, C. P., Murphy, J., Newell, J., & Molloy, G. J. (2018). Comparative effectiveness of physical activity interventions and anti-hypertensive pharmacological interventions in reducing blood pressure in people with hypertension: protocol for a systematic review and network meta-analysis. Systematic Reviews, 7(1). https://doi.org/10.1186/s13643-018-0791-9
Nugroho, A., Warditiani, N., Pramono, S., Andrie, M., Siswanto, E., & Lukitaningsih, E. (2012). Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian Journal of Pharmacology, 44(3), 377. https://doi.org/10.4103/0253-7613.96343
Ogunmoyole, T., Awodooju, M., Idowu, S., & Daramola, O. (2020). Phyllanthus amarus extract restored deranged biochemical parameters in rat model of hepatotoxicity and nephrotoxicity. Heliyon, 6(12), e05670. https://doi.org/10.1016/j.heliyon.2020.e05670
Páez, M. T., Rodríguez, D. C., López, D. F., Castañeda, J. A., Buitrago, D. M., Cuca, L. E., & Guerrero, M. F. (2013). Croton schiedeanus Schltd prevents experimental hypertension in rats induced by nitric oxide deficit. Brazilian Journal of Pharmaceutical Sciences, 49(4), 865–871. https://doi.org/10.1590/s1984-82502013000400027
Park, H.-J., & Kim, M.-M. (2014). Flavonoids in Ginkgo biloba fallen leaves induce apoptosis through modulation of p53 activation in melanoma cells. Oncology Reports, 33(1), 433–438. https://doi.org/10.3892/or.2014.3602
Patel, J. R., Tripathi, P., Sharma, V., Chauhan, N. S., & Dixit, V. K. (2011). Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. Journal of Ethnopharmacology, 138(2), 286–313. https://doi.org/10.1016/j.jep.2011.09.040
Petrie, J. R., Guzik, T. J., & Touyz, R. M. (2018). Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Canadian Journal of Cardiology, 34(5), 575–584. https://doi.org/10.1016/j.cjca.2017.12.005
Qamar, M., Akhtar, S., Ismail, T., Wahid, M., Abbas, M. W., Mubarak, M. S., & Esatbeyoglu, T. (2022). Phytochemical Profile, Biological Properties, and Food Applications of the Medicinal Plant Syzygium cumini. Foods, 11(3), 378. https://doi.org/10.3390/foods11030378
Rajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E. N., Lakshminarasaiah, U., & Nishigaki, I. (2014). Antioxidants and human diseases. Clinica Chimica Acta, 436, 332–347. https://doi.org/10.1016/j.cca.2014.06.004
Ramkumar, S., Thulasiram, H. V., & RaviKumar, A. (2021). Improvement in serum amylase and glucose levels in diabetic rats on oral administration of bisdemethoxycurcumin from Curcuma longa and limonoids from Azadirachta indica. Journal of Food Biochemistry, 45(4). https://doi.org/10.1111/jfbc.13674
Rees, A., Dodd, G., & Spencer, J. (2018). The Effects of Flavonoids on Cardiovascular Health: A Review of Human Intervention Trials and Implications for Cerebrovascular Function. Nutrients, 10(12), 1852. https://doi.org/10.3390/nu1012185
Ried, K. (2016). Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review. The Journal of Nutrition, 146(2), 389S396S. https://doi.org/10.3945/jn.114.202192
Ried, K., & Fakler, P. (2014). Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Integrated Blood Pressure Control, 71. https://doi.org/10.2147/ibpc.s51434
Ried, K., Frank, O. R., & Stocks, N. P. (2012). Aged garlic extract reduces blood pressure in hypertensives: a dose–response trial. European Journal of Clinical Nutrition, 67(1), 64–70. https://doi.org/10.1038/ejcn.2012.178
Rosario, V. A., Schoenaker, D. A. J. M., Kent, K., Weston-Green, K., & Charlton, K. (2020). Association between flavonoid intake and risk of hypertension in two cohorts of Australian women: a longitudinal study. European Journal of Nutrition, 60(5), 2507–2519. https://doi.org/10.1007/s00394-020-02424-9
Sen, T., & Samanta, S. K. (2014). Medicinal Plants, Human Health and Biodiversity: A Broad Review. Biotechnological Applications of Biodiversity, 59–110. https://doi.org/10.1007/10_2014_273
Senoner, T., & Dichtl, W. (2019). Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients, 11(9), 2090. https://doi.org/10.3390/nu11092090
Serban, C., Sahebkar, A., Ursoniu, S., Andrica, F., & Banach, M. (2015). Effect of sour tea (Hibiscus sabdariffa L.) on arterial hypertension. Journal of Hypertension, 33(6), 1119–1127. https://doi.org/10.1097/hjh.0000000000000585
Setyaningsih, F. Saputri, & A. Mun'im. (2019). The Antidiabetic Effectivity of Indonesian Plants Extracts via DPP-IV Inhibitory Mechanism. Undefined; https://www.semanticscholar.org/paper/The-Antidiabetic-Effectivity-of-Indonesian-Plants-Setyaningsih-Saputri/490cce5165d54db33633c8ed2233086eb3d2462c
Shaito, A., Thuan, D. T. B., Phu, H. T., Nguyen, T. H. D., Hasan, H., Halabi, S., & Pintus, G. (2020). Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.00422
Souza, M. T. de, Silva, M. D. da, & Carvalho, R. de. (2010). Integrative review: what is it? How to do it? Einstein (São Paulo), 8(1), 102–106. https://doi.org/10.1590/s1679-45082010rw1134
Silva, MVB., Vitória, B., Sales, S., Antonio, C., Aline, Lopes, G., & Amanda. (2022). Caracterização do perfil epidemiológico da mortalidade por doenças cardiovasculares no Brasil: um estudo descritivo. Enfermagem Brasil, 21(2), 154–165. https://doi.org/10.33233/eb.v21i2.5030
Srividya N;Periwal S. (2019). Diuretic, hypotensive and hypoglycaemic effect of Phyllanthus amarus. Indian Journal of Experimental Biology, 33(11). https://pubmed.ncbi.nlm.nih.gov/8786163/
Syamsunarno, M. R. A., Safitri, R., & Kamisah, Y. (2021). Protective Effects of Caesalpinia sappan Linn. and Its Bioactive Compounds on Cardiovascular Organs. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.725745
Thota, R. N., Acharya, S. H., & Garg, M. L. (2019). Curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: a randomised controlled trial. Lipids in Health and Disease, 18(1). https://doi.org/10.1186/s12944-019-0967-x
Tschiedel, B. (2014). Complicações crônicas do diabetes. 102. Retrieved from http://files.bvs.br/upload/S/0047-2077/2014/v102n5/a4502.pdf
Uddin, G. M., Kim, C. Y., Chung, D., Kim, K.-A., & Jung, S. H. (2015). One-step isolation of sappanol and brazilin from Caesalpinia sappan and their effects on oxidative stress-induced retinal death. BMB Reports, 48(5), 289–294. https://doi.org/10.5483/bmbrep.2015.48.5.189
Wediasari, F., Nugroho, G. A., Fadhilah, Z., Elya, B., Setiawan, H., & Mozef, T. (2020). Hypoglycemic Effect of a Combined Andrographis paniculata and Caesalpinia sappan Extract in Streptozocin-Induced Diabetic Rats. Advances in Pharmacological and Pharmaceutical Sciences, 2020, 1–9. https://doi.org/10.1155/2020/8856129
World Health Organization. (2021). Guideline for the pharmacological treatment of hypertension in adults. https://apps.who.int/iris/bitstream/handle/10665/344424/9789240033986-eng.pdf
World Health Organization. World Health Organization; France: 2016. Global Report on Diabetes WHO. (2016). Global Report On Diabetes. https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf
Xiong, X. J., Liu, W., Yang, X. C., Feng, B., Zhang, Y. Q., Li, S. J., & Wang, J. (2014). Ginkgo biloba extract for essential hypertension: A systemic review. Phytomedicine, 21(10), 1131–1136. https://doi.org/10.1016/j.phymed.2014.04.024
Yao, A. N., Kamagaté, M., Amonkan, A. K., Chabert, P., Kpahé, F., Koffi, C., & Die-Kakou, H. (2018). The acute diuretic effect of an ethanolic fraction of Phyllanthus amarus (Euphorbiaceae) in rats involves prostaglandins. BMC Complementary and Alternative Medicine, 18(1). https://doi.org/10.1186/s12906-018-2158-0
Yao, N. A., Niazi, Z. R., Najmanová, I., Kamagaté, M., Said, A., Chabert, P., & Schini-Kerth, V. (2020). Preventive Beneficial Effect of an Aqueous Extract of Phyllanthus amarus Schum. and Thonn. (Euphorbiaceae) on DOCA-Salt–Induced Hypertension, Cardiac Hypertrophy and Dysfunction, and Endothelial Dysfunction in Rats. Journal of Cardiovascular Pharmacology, 75(6), 573–583. https://doi.org/10.1097/fjc.0000000000000825
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Matheus Vinicius Barbosa da Silva; Gleyciele dos Santos Barbosa; Alisson Carlos da Rocha; Diego da Rocha; Thais Ana da Silva; Jackson Alves da Silva; Alyssa Castelo Branco Alencar Andrade; Bruna Bezerra Pimentel Andrade; Francisco Antonio da Cruz dos Santos; Jonas Laerte Longen Junior; Heverton Valentim Colaço da Silva
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.