Single Crystal of 1-(2'-hidroxyphenyl)-3-hidroxy-3-(4-methoxyphenil)-propan-1-one: Synthesis, structure and vibrational properties

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.31433

Keywords:

Chalcones derivatives; Flavonoid synthesis; Flavonoids structure; Raman in flavonoids.

Abstract

Chalcones, flavonoids, isoflavonoids and other derived substances have been extensively studied in recent years presenting various pharmacological activities and in some cases presenting very important physical properties such as non-linear optical properties (ONL). Recently it was observed that the compound 1-(2'-hydroxyphenyl)-3-hydroxy-3-(4-methoxyphenyl)-propan-1-one is an intermediate precursor in the biosynthesis of (2E)-1-(2-hydroxyphenyl) -3-(4-methoxyphenyl)prop-2-en-1-one, which is a compound belonging to the class of chalcones. After this observation, said precursor compound was crystallized in the laboratory and its crystal structure was identified by X-ray diffraction. The title compound was synthesized and crystallized from methanol in the centrosymmetric space group P21/c. The geometric parameters and supramolecular arrangement of the crystal structure obtained from single crystal X-ray diffraction data were analyzed. Furthermore, the vibrational properties were characterized by Raman spectroscopy. The attributions of the vibrational modes and detailed information of the synthesis are presented.

Author Biography

Antônio Pedro da Silva Souza Filho, Embrapa Amazônia Oriental

 

 

 

References

Arshad S, Pillai R.R, Zainuri D.A, Khalib N.C, Razak I.A, Armakovic S, Armakovic S.J, Renjith R, Panicker C.Y, & Alsenoy C.V. (2017). Synthesis, XRD crystal structure, spectroscopic characterization, local reactive properties using DFT and molecular dynamics simulations and molecular docking study of (E)-1-(4-bromophenyl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-on. Journal of Molecular Structure, 1137, 419-430. 10.1016/J.MOLSTRUC.2017.02.045.

Batovska D, & Todorova I. T. (2010). Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharm, 5, 1 - 29. DOI:10.2174/157488410790410579.

Bertl E, Becker H, Eicher T, Herhaus C, Kapadia G, Bartsch H, & Gerhauser C. (2004). Inhibition of endothelial cell functions by novel potential cancer chemopreventive agents. Biochem. Biophys. Res. Commun, 325, 287-295. 10.1016/j.bbrc.2004.10.032.

Bitencourt, H. R.; de Albuquerque, C. A. B.; Souza Filho, A. P. S.; dos Anjos, M. L.; a Maciel, C. J. A.; Pina, J. R. S.; Pinheiro, J. C.; de Carvalho, L. L. P. P.; Marinho, A. M. R.; & de Almeida, O. (2020). Análise dos Produtos de Reação da Condensação entre 2-Hidróxiacetofenona e p-Anisaldeído em Meio Básico. In: A química nas áreas natural, tecnológica e sustentável. Vol. 3. Organizadora Érica de Melo Azevedo. – Ponta Grossa, PR: Atena Editora.

Boeck P, Leal P.C, Yunes R.A, Filho V.C, Lopez S, M. Sortino S, Escalante A, Furlan R.L.E, & Zacchino S. (2005). Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Arch. Der. Pharm, 338, 87 - 95. 10.1002/ardp.200400929.

Custodio J.M.F, Vaz W.F, Andrade F.M, Camargo A.J, Oliveira G.R, Napolitano H.B. (2017) Substitution effect on a hydroxylated Chalcone: Conformational, topological and theoretical studies. Journal of Molecular Structure, 1136, 69-79. 10.1016/j.molstruc.2017.01.076.

Dolomanov O.V, Bourhis L.J, Gildea R.J, & Howard J.A.K. (2009). Puschmann H, Olex2: A complete structure solution, refinement and analysis program. J. Appl. Cryst., 42, 339-341. 10.1107/S0021889808042726.

Fichou D, Watanabe T, Takeda T, Miyata S, Goto Y, & Nakayama M. (1988). Influence of the Ring-Substitution on the Second Harmonic Generation of Chalcone Derivatives. Jpn J. Appl. Phys, 27, L429-L430.

Gaonkar S.L, & Vignesh U. N. (2017). Synthesis and pharmacological properties of chalcones: a review. Res. Chem, Intermed, 43, 6043-6077. 10.1007/s11164-017-2977-5.

Gupta R.A, & Kaskhedikar S.G. (2013). Synthesis, antitubercular activity, and QSAR analysis of substituted nitroaryl analogs: chalcone, pyrazole, isoxazole, and pyrimidines. Med. Chem. Res, 22, 3863- 3880. 10.1007/s00044-012-0385-3.

Joseph L, Sajan D, Shettigar V, Chaitanya K, Misra N, Sundius T, & Nemec I. (2013). Synthesis, Crystal growth, thermal studies and scaled quantum chemical studies of structural and vibrational spectra of the highly efficient organic NLO crystal: 1-(4-Aminophenyl)-3-(3,4-dimethoxyphenyl)-prop-2-en-1-one. Materials Chemistry and Physics, 141, 248-262. 10.1016/j.matchemphys.2013.05.007.

Mary Y. S, Panicker C. Y, Anto P. L, Sapnakumari M, Narayana B, & Sarojini B.K. (2015). Molecular structure, FT-IR, NBO, HOMO and LUMO, MEP and first order hyperpolarizability of (2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl) prop-2-en-1-one by HF and density functional methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135, 81-92. 10.1016/j.saa.2014.06.140.

Mello T. F. P, Cardoso B.M, Lopes S.N, Bitencourt H.R, Voltarelli E.M, Hernandes L, M.A. Aristides L., Lonardoni M.V.C, & Silveira T.G.V. (2015). Activity of synthetic chalcones in hamsters experimentally infected with Leishmania (Viannia) braziliensis. Parasito Res, 114, 3587-3600. 10.1007/s00436-015-4581-1.

Mphahlele, M. J. & Fernandes, M. A. (2002). Isolation And Crystal Structure Of 3-aryl-1-(2-hydroxyphenyl)-3-hydroxy-1- propanones derived from Claisen-Schmidt condensation of 2-hydroxyacetophenone with benzaldehyde derivatives. South African Journal of Chemistry, 55, 97-110. 10.10520/EJC23661.

McKinnon J.J, Spackman M.A, & Mitchell A.S. (2004). Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. Sect. B: Struct. Sci, 60, 627–668.

Narender T, Tanvir K.S, Rao M.S, Srivastava K, & Puri S.K. (2005). Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorg. Med. Chem. Lett, 15, 2453 - 2455. 10.1016/j.bmcl.2005.03.081.

Sahu N.K, Balbhadra S.S, Choudhary J, & Kohli D.V. (2012). Exploring pharmacological significance of chalcone scaffold: a review. Curr. Med. Chem, 19, 209 - 225. 10.2174/092986712803414132.

Santiago R.N.S, Freire P.T.C, Texeira A.M.R, Bandeira P.N, Santos H.S, Lemos T.L.G, & Ferraz G.A.N. (2018). FT-Raman and FT-IR spectra and DFT calculations of chalcone (2E)-1-(4-aminophenyl)-3-phenyl-prop-2-en-1one, Vibrational Spectroscopy, 97, 1-7. 10.1016/j.vibspec.2018.04.007.

Singh A.K, Saxena G, Prasad R, & Kumar A. (2012). Synthesis, characterization and calculated non-linear optical properties of two new chalcones. Journal of Molecular Structure, 1017, 26-31. 10.1016/j.molstruc.2012.02.070.

Kontogiorgis C, Mantzanidou M, & Hadjipavlou-Litina D, (2008). Chalcones and their Potential Role in Inflammation. Mini Rev. Med. Chem, 8, 1224 - 1242. 10.2174/138955708786141034.

Kumar C. S. C, Balachandran V, Fun H, Chandraju S, & Quah C. K. (2015). Synthesis, crystal growth, single crystal X-ray analysis and vibrational spectral studies of (2E)-3-(2-chloro-4-fluorophenyl)-1-(3,4- dimethoxyphenyl) prop-2-en-1-one: A combined DFT study. Journal of Molecular Structure, 1100, 299-310. 10.1016/J.MOLSTRUC.2015.07.041.

Colocar espaço entre uma referência e outra. Lembre-se que usamos a norma APA. (fonte TNR 8 – espaço simples -justificado)

Published

04/07/2022

How to Cite

BITENCOURT , H. R. .; PINHEIRO, J. C. .; SOUZA FILHO, A. P. da S. .; MOREIRA, S. G. .; AYALA, A. P.; REMÉDIOS, C. M. R. Single Crystal of 1-(2’-hidroxyphenyl)-3-hidroxy-3-(4-methoxyphenil)-propan-1-one: Synthesis, structure and vibrational properties. Research, Society and Development, [S. l.], v. 11, n. 9, p. e10311931433, 2022. DOI: 10.33448/rsd-v11i9.31433. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31433. Acesso em: 22 dec. 2024.

Issue

Section

Exact and Earth Sciences