The role of phenolic compounds in metabolism and their antioxidant potential

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.31750

Keywords:

Secondary compounds; Antioxidant activity; Cancer; Free radicals.

Abstract

The intake of fruits and vegetables rich in nutrients with bioactive properties is associated with the prevention of a range of chronic diseases such as cardiovascular diseases, diabetes, and cancer that originate from physiological disorders, which can be promoted by the accumulation of free radicals in the body. Several chemical compounds with bioactive functions are found in fruits and vegetables. Among these, phenolic compounds stand out for having high antioxidant capacity. These compounds originate from the secondary metabolism of plants, being essential for their growth and reproduction. In addition, they can be more expressed by plants under stress conditions, such as infections by microorganisms, lesions, severe climate changes, nutritional deficiency, among others. The highest concentrations of these phenols are found in fruit and vegetable skins, due to their potential use in protecting against UV rays, pathogens and predators. The search for new sources of natural and/or synthesized antioxidants has been growing due to the wide biological activity observed for these compounds, such as the inhibition of lipid oxidation and its action against the inactivation of free radicals. These compounds can be synthesized via the shikimate/phenylpropanoid pathway. It is believed that after consumption they are partially degraded in the small intestine, about 5 to 10%, and the rest in the large intestine. Here we review how the plant synthesizes phenolic compounds and their health effects, demonstrating the significant dietary activity of these compounds in metabolic processes.

References

Aditivos e Ingredientes. (2013). Antioxidantes sintéticos e naturais. Revista digital (95), 2-5, https://aditivosingredientes.com.br/upload_arquivos/201603/2016030392863001459281438.pdf.

Aguiar, J. P. L., Silva, E. P., Junior, Raimundo C, P., Nagahama, D., Souza, F. C. A. (2019). Aromatic and nutritional profile of an Amazonian autochthonous species, Caramuri Pouteria elegans (A.DC.) Baehni. 2019, International Journal Of Food Properties, 22, 1242-1249.

Aherne, S. A., & O'brien, N. M. (2002). Flavonóis na dieta: química, conteúdo alimentar e metabolismo. Nutrition 18: 75-81, 2002.

Aires, M. V. L., Modesto, R. M. G., & Santos, J. S. (2021). The benefits of grape on human health: a review . Research, Society and Development, 10(14), e281101421825. 10.33448/rsd-v10i14.21825. https://rsdjournal.org/index.php/rsd/article/view/21825.

Almeida, R. L., Santos, N. C., Santos Pereira, T., Alcântara Silva, V. M., Cabral, M. B., Barros, E. R., Souza, N. C, Luiz, M. R. Amorim, F. V. & da Silva, L. R. I. (2020). Determination of bioactive compounds and physicochemical composition of jabuticaba bark flour obtained by convective drying and lyophilization. Research, Society and Development, 9(1), 1-18.

Alves, C. Q. et al. (2010). Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Química Nova, Bahia, 33(10), 2202-2210.

Awad, W. A., C. Hess, and M. Hess. (2017). Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins 9 (2):60. 10.3390/ toxins9020060.

Barros, H., Maróstica J., Mário, R., (2018). Phenolic Compound Bioavailability Using In Vitro and In Vivo Models. Bioactive Compounds, 113-126. http://dx.doi.org/10.1016/b978-0-12-814774-0.00006-2.

Bentz, A. B. (2009) A Review of Quercetin_ Chemistry, Antioxidant Properties, and Bioavailability — Journal of Young Investigators.

Brand, W., Wel, P., Rein, M., Barron D., Williamson, G., Van Bladeren P., Rietjens, I. (2008(, Metabolism and Transport of the Citrus Flavonoid Hesperetin in Caco-2 Cell Monolayers. Drug metabolism and disposition: the biological fate of chemicals. 36. 1794-802. 10.1124/dmd.107.019943, 2008.

Bravo, L. (1998) Polyphenols: chemistry, dietary sources, metabolism and nutrition significance. Nutrition Reviews, 56(11), 317-333.

Boots A. W, Drent M., De Boer V. C., Basta A, & Haenhener, G. R. (2011). Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin Nutr. 30(4):506-12. 10.1016/j.clnu.2011.01.010.

Cai, X., Fang, Z., Dou, J., Yu, A., & Zhai, G. (2013). Bioavailability of Quercetin: Problems and Promises. Current Medicinal Chemistry, 2013, 20, 2572-2582.

Castro, H. G. et al. (2004). Contribuição ao estudo das plantas medicinais – Metabólitos secundários (2a ed.), 113. Visconde do Rio Branco.

Calderón-, J. M., Bergues-Moron, E., Pérez-Guerreiro-, C., & Lópes,Martin-Lázaro, M. (2011). A review on the dietary flavonoiaempferol. Mini reviews in medicinal chemistry, 11(4), 298– 344

Chen, C., & Zhou., JI, C. (2010). Quercetin: A potential drug to reverse multidrug resistance. Life Sciences, 87(11-12), 333–338.

Chen L. Pu Y. Hu Y., Xu Re, Cao J., MaY., & Jiang W. (2022). Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables, Food research Internationl, 157. 111202https://doi.org/10.1016/j.foodres.2022.111202

David, A. V. A., Arulmoli, R., & Parasuraman, S. (2016). Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn Rev. 2016 Jul-Dec, 10(20): 84–89.

D’Abrosca, D., Pacifico, S., Cefarelli, G., Mastellone, C. & Fiorentino A. (2007). ‘Limoncella’ apple, an Italian apple cultivar: Phenolic and flavonid contents and antioxidant activity. Food chemistry 104: 1333-1337.

D’Archivio, M., Filesi, C., Benedetto, R., Gargiulo, R., Giovanni, C., & Masella, R., (2007). Polyphenols, dietary sources and bioavailability. Annali dell’Istituto Superiore di Sanita 43 (4), 348–361.

Da Silva, M. M. M., Silva, E. P., Garcia, L. G. C., Silva, A. P. G. Xiao, J. & Damiani, C. (2020) . Bioactive Compounds and Nutritional Value of Cagaita (Eugenia dysenteric) during its Physiological Development. eFood, 1, 1-9.

Da Silva, A. P. G. (2021). Fighting coronaviruses with natural polyphenols. Biocatalysis and agricultural biotechnology, 37, 102179, 2021.

Da Silva, S.V.S., Barboza, O.M., Souza, J.T., Soares, É.N., dos Santos, C.C., Pacheco, L.V., Santos, I.P., Magalhães, T.B.d.S., Soares, M.B.P., Guimarães, E.T., Meira, C.S., Costa, S.L., da Silva, V.D.A., de Santana, L.L.B., de Freitas Santos Júnior, A. (2021). Structural Design, Synthesis and Antioxidant, Antileishmania, Anti-Inflammatory and Anticancer Activities of a Novel Quercetin Acetylated Derivative. Molecules 26, 6923. https://doi.org/10.3390/molecules26226923

Decker, E. A. (1998). Strategies for manipulantig the prooxidative/antioxidative balance of food to maximize oxidativestability. Trends Food Sci Technol 1998, 9 (6): 241-8

Del Rio, D., Rodriguez,Mateos, , A., Spencer, J.P.E., Tognolini, M., Borges, G., Crozier, A., (2013). Dietary (Poly) phenolics in Human Health:Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants & Redox Signaling 18 (14).

Dewick, P. M. (2002). The biosynthesis of C 5–C 25 terpenoid compounds. Natural product reports, 19(2), 181-222.

Duda-Chodak, A., Tarko, T., Santora, P., Sroka, P. 2015. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European Journal of Nutrition 54, 325–341.

Duenas, M., MuÑoz-González, I., Cueva, C., Jiménez-Girón, A., Sanchez-Patan, F., Santos-Buelga, C., Moreno-Arribas, M. V. & Bartolomé, B. (2015), A Survey of Modulation of Gut Microbiota by Dietary Polyphenols. Academic Editor: Clara G. de los Reyes-Gavilán, Biomed Research International.

Grynkiewicz, G., & Demchuk, O. M. (2019). New Perspectives for Fisetin. Frontiers in chemistry, 7, 697.

Guo, Y., Mah, E., & Bruno, R. S. (2014). Quercetin bioavailability is associated with inadequate plasma vitamin C status and greater plasma endotoxin in adults. Nutrition 30 1279–1286.

Hithamani, G., & Srinivasan, K. (2014). Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food Chemistry 164, 55–62. Jakobek, L., 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry 175, 556–567.

Hollands, W., Brett, G. M., Dainty, JR., Teucher B., & Kroon P. A. Urinary excretion of strawberry anthocyanins is dose dependent for physiological oral doses of fresh fruit. Mol Nutr Food Res. 2008.

Hollman, P. C., Van Tripp, J., Buysman, M. N., Van der Gaag, M. S., & Mengelers, M. B. (1995) Relative Bioavailability of the flavonóide quercetin from various foods in man. Federation of European Biochemical Societies leters. 418, 152-156

Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa de Orçamentos Familiares (POF) 2008-2009, Aquisição de alimentos Domiciliar per capita: Brasil e grandes regiões. 2010. http://www.ibge.gov.br/home/estatistica/popula cao/condicaodevida/.

Kempinski, C., Jiang, Z., Bell, S., and Chappell, J. 2015. Metabolic engineering of higher plants and algae for isoprenoid production. Adv. Biochem. Eng. Biotechnol. 148:161-199. 10.1007/10_2014_290.

Kumar, S., Pandey, A. K. Chemistry and biological activities of flavonoids: na overview. Scientific World journal, 162750, 2013.

Kumar Singh, A., Cabral, C., Kumar, R., Ganguly, R., Kumar Rana, H., Gupta, A., Rosaria Lauro, M., Carbone, C., Reis, F., Pandey, A.K. (2019). Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients 2019, 11, 2216. https://doi.org/10.3390/nu11092216

Loomis, W. D., Croteau, R. In: Stumpf, P. K. (ed). Biochemistry of Terpenoids. Lipids: Structure and Function: The Biochemistry of Plants. Elsevier, 2014. Volume 4, Chap. 13, p. 364-410.

Manzano S. & Williamson G. (2010). Polifenóis e ácidos fenólicos de morango e maçã diminuem a captação e transporte de glicose pelas células Caco-2 intestinais humanas. Mol Nutr Food Res. 54: 1773–1780.

Messias, K. L. da S. Dossiê AntioxidDantes. Food Ingredients Brasil, 6, 16–31, 2009.

Monteiro, S. C., & Brandelli, C. L. C. (2017) Farmacobotanica: aspectos teóricos e aplicações. Artimed Editora LTDA, p.48.

Moon, Y. J., Wang, X., & Morris, M.E. (2006) Dietary Flavonoids: Effects on xenobiotic and carcinogem metabolism. Toxicoligy in vitro, Oxon, 20, 187-210.

Nardini, M., & I. Garaguso, Characterization of bioactive compounds and antioxidant activity of fruit beers, Food Chem. 305 (2020), 125437, https://doi. org/10.1016/j.foodchem.2019.125437.

Parida, K.A., Panda, A., & Rangani, J. (2018). Metabolomics-Guied Elucidation of Abiotic Stree Tolerance Mechanisms in Plant. Plant Metabolites and Regulation Under Environmental Stress. Pages 89-131. Doi 10,1016/B978-0-12-812689-9.00005-7.

Paraginski, R. T., Talhamento, A., Oliveira, M., & Elias, M. C. (2015) Efeitos da temperatura nas alterações do teor de compostos com potencial antioxidante em grãos de milho durante o armazenamento. Revista Brasileira de Produtos Agroindustriais, 17(2), 159-167.

Pardhi V. P., Verma T., Flora S. J. S., Chandasana H., Shukla R. (2018). Nanocrystals: an overview of fabrication, characterization and therapeutic applications in drug delivery. Curr Pharmaceut Des 24: 5129e46

Parus, A. (2013) Antioxidant and pharmacological properties of phenolic acids. Postępy Fitoter, 1, 48–53.

Rana A. C., & Gulliya B. (2019). Chemistry and pharmacology of flavonoids-a review. IJPER. 53(1):8–20

Ratmanesh, R. (2011). High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chemico-Biological Interactions 189, 1–8.

Ravindra, N. S., & Kulkarni, R.N. (2015) Essential oil yield and quality in rose-scented geranium: Variation among clones and plant parts. Scientia Horticulturae. 184, 31–35

Rietveld, A., & Wiseman, S. (2003) Antioxidant effect s of tea: evidence from human clinical trials. J Nutr, 133(10), 3275-84.

S. Deepak, S. Ruchi, C. Sandra, V. Alvaro, Myricetin: a dietary molecule with diverse biological activities, Nutrients 8 (2) (2016) 90, https://doi.org/10.3390/nu8020090.

Santhakumar, A.B., Battino, M., Alvarez-Suarez, J.M. (2018). Dietary polyphenols: structures, bioavailability and protective effects against atherosclerosis. Food and Chemical Toxicology 113, 49–65.

Santino, A., Scarano, A., Santis, S., Benedictis, M., Giovinazzo, G., Chieppa, M. (2017). Gut microbiota modulation and anti-inflammatory properties of dietary polyphenols in IBD: new and consolidated perspectives. Current Pharmaceutical Design 23, 2344–2351.

Santos, S. J., Cirino,J.P.G., Carvalho, P.O., Ortega, M.M. (2021) The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Frontiers in Pharmacology. 11, 1-15, 10.3389/fphar.2020.565700.

Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. (2019) Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules. 24(13):2452. https://doi.org/10.3390/molecules24132452

Shafek, R. E., Shafik, N. H., and Michael, H. N. (2012). Antibacterial and antioxidant activities of two new kaempferol glycosides isolated from Solenostemma argel stem extract. Asian J. Plant Sci. 11, 143–147. doi:10. 3923/ajps.2012.143.147

Shen, B., Shen, C., Zhu, W., Yuan, H., 2021. The contribution of absorption of integral nanocrystals to enhancement of oral bioavailability of quercetin. Acta Pharmaceutica Sinica B, 11(4), 978-988. http://dx.doi.org/10.1016/j.apsb.2021.02.015.

Silva, E. P. da, Dias, L. G., Marot, P. P., Goulart, G. A. S., Freitas, F. A., Daminani, C. (2020) Fatty acid and chemical composition of the seed and the oil obtained from marolo fruit (Annona crassiflora Mart.). Research, Society and Development, 9(9), e389996670, 10.33448/rsd-v9i9.6670. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6670.

Song, X., Tan L., Wang M., Ren, C., Guo,C., Yang, B., Ren, Y., Cao, Z., Li, Y., Pei, J. (2021). Myricetin: A review of the most recent research. Biomedicine & Pharmacotherapy 134 (2021) 111017. https://doi.org/10.1016/j.biopha.2020.111017

Souza, E.L., Albuquerque, T. M. R., Santos, A. S., Massa, N. M. L., De Alves, J. L. B. (2019) Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities – a review, Crit. Rev. Food Sci. Nutr., 59(10), 1-15.

Souza, A. N. S. N, Schmidt, H. O., Pagno, C., Rodrigues, E., Silva, M. A. S., Flôres, S. H., Oliveira Rios, A. (2022). Influence of cultivar and season on carotenoids and phenolic compounds from red lettuce influence of cultivar and season on lettuce. Food Research International. 155, 111110. https://doi.org/10.1016/j.foodres.2022.111110

Tressera-Rimbau, A., Arranz, S., Eder, M., Vallverd-Queralt, A. (2017) Dietary Polyphenols in the Prevention of Stroke. Oxidative Medicine And Cellular Longevity, [S.L.], v. 2017, p. 1-10, 2017. Hindawi Limited. http://dx.doi.org/10.1155/2017/7467962.

Valdés, L., Cuervo, A., Salazar, N., Ruas-Madiedo, P., Gueimonde, M., Gonzalez, S. (2015) The relationship between phenolics compounds from diet and microbiota: impact on human health. Food Funct. 6(8):2424-2439, 2015.

Van Hung, P. (2014). Phenolic Compounds of Cereals and Their Antioxidant Capacity. Critical Reviews in Food Science and Nutrition, 56(1), 25–35. 10.1080/10408398.2012.708909 url to share this paper:sci hub.tw/10.1080/10408398.2012.708909.

Vskupicová, J., Ondrejovic, M., Sturdik, E. (2008) Bioavailability and metabolism of flavonoids. Journal of Food and Nutrition Research 47 (4), 151–162.

Wan, M. L. Y., Co, V. A., & El-Nezami, H. (2020). Dietary polyphenol impact on gut health and microbiota. Critical Reviews in Food Science and Nutrition, 1–22. 10.1080/10408398.2020.1744512

Wang, J., Fang, X., Ge, L., Cao, F., Zhao, L., Wang, Z., et al. (2018). Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PloS One 13 (5), e0197563. doi:10.1371/journal. pone.0197563

Winkel-Shirley B. (2001) Flavonoids biosynthesis. a colourful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol., 126, 485-493.

World Health Organization. Diet, nutrition and the prevention of chronic diseases. Geneva: World Health Organization, 2003.

Yu, J., Liu, X, Zhang, L., Shao, P., Wu, W., Chen, Z., Li, J., Rernard, C. M. G. C. (2022). An onverview of carotenoid extractions using green solvents assisted by Z-isomeration. Trendes in Food Science and Technology, 123, 145-160.

Zanoni, J. N., Hermes-Uliana, C. (2015). Combination Vitamin C and Vitamin E Prevents Enteric Diabetic Neuropathy in the Small Intestine in Rats. Brazilian Archives Of Biology And Technology, 58(4): 504-511.

Zhang, H., Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and antiinflammatory effects, Curr. Opin. Food Sci, 8, 33–42.

Downloads

Published

01/08/2022

How to Cite

SILVA, E. P. da; HERMINIO, V. L. de Q. .; MOTTA, D. N. .; SOARES, M. B. P.; RODRIGUES , L. de A. P. .; VIANA , J. D. .; FREITAS, F. A. de .; SILVA, A. P. G. da .; SOUZA, F. das C. do A. . .; VILAS BOAS, E. V. de B. . The role of phenolic compounds in metabolism and their antioxidant potential . Research, Society and Development, [S. l.], v. 11, n. 10, p. e297111031750, 2022. DOI: 10.33448/rsd-v11i10.31750. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31750. Acesso em: 3 jan. 2025.

Issue

Section

Review Article