COVID-19, dyslipidemia and familial hypercholesterolemia: an up-date




Dyslipidemia; Familial Hypercholesterolemia; COVID-19; SARS-CoV-2; Hypolipidemic.


COVID-19 (coronavirus disease 2019) is an infection caused by the SARS-CoV-2 coronavirus, which can evolve into a severe respiratory condition, affecting the world population in a pandemic manner. In this study, we aimed to update the findings of the mechanisms that associate dyslipidemia with COVID-19 infection, the evolution of severe form and the influence of lipid-lowering treatment on outcomes. The search was performed in the PubMed and Embase databases and the selection was based on dyslipidemia and COVID-19 studies, which resulted in 31 articles. In results, the evidence in changes in cholesterol metabolism was found in SARS-CoV-2 virus infection with variations in high-density lipoprotein (HDL) levels. In addition, it provided an increase in triglycerides (TG) and very-low-density lipoprotein cholesterol (VLDLc). Patients with familial hypercholesterolemia (FH) with COVID-19 representing a group of individuals who develop early atherosclerotic disease with a higher risk of cardiovascular event, which should intensify the lipid-lowering treatment due to the potential risk of coronary endothelial dysfunction caused by viral infection. Cholesterol modifying drugs have a potential to change the life cycle of the virus, resulting in a range of pleiotropic effect on infectivity, immunity and inflammation, such as statins, fibrates, ezetimibe, proprotein convertase subtilisin/kexin type 9 inhibitors (iPCSK9), omega-3 fatty acids, bile acids sequestrants and nicotinic acid. As dyslipidemia is one of the main risk factors for the severe form of COVID-19, causing endothelial dysfunction previously installed in dyslipidemic patients, the use of lipid-lowering drugs can reduce the risk factors for the unfavorable outcome in these patients.

Author Biographies

Jéssica Abdo Gonçalves Tosatti, Universidade Federal de Minas Gerais

Faculdade de Farmácia da UFMG

Cinthia Elim Jannes, Universidade de São Paulo

Laboratório de Genética do Instituto do Coração (INCOR)

Iêda de Fátima Oliveira Silva, Universidade Federal Minas Gerais

Faculdade de Farmácia da UFMG

Karina Braga Gomes, Universidade Federal Minas Gerais

Faculdade de Farmácia da UFMG

Faculdade de Medicina da UFMG


Abu-Farha, M., Thanaraj, T. A., Qaddoumi, M. G., Hashem, A., Abubaker, J., & Al-Mulla, F. (2020). The Role of Lipid Metabolism in COVID-19 Virus Infection and as a Drug Target. International Journal of Molecular Sciences, 21(10), 3544.

Alcántara-Alonso, E., Molinar-Ramos, F., González-López, J. A., Alcántara-Alonso, V., Muñoz-Pérez, M. A., Lozano-Nuevo, J. J., Benítez-Maldonado, D. R., & Mendoza-Portillo, E. (2021). High triglyceride to HDL-cholesterol ratio as a biochemical marker of severe outcomes in COVID-19 patients. Clinical Nutrition ESPEN, 44, 437–444.

Atmosudigdo, I. S., Lim, M. A., Radi, B., Henrina, J., Yonas, E., Vania, R., & Pranata, R. (2021). Dyslipidemia Increases the Risk of Severe COVID-19: A Systematic Review, Meta-analysis, and Meta-regression. Clinical Medicine Insights: Endocrinology and Diabetes, 14, 117955142199067.

Baez-Duarte, B.G., Zamora-Gínez, I., González-Duarte, R., Torres-Rasgado, E., Ruiz-Vivanco, G., Pérez-Fuentes, R. & The Multidisciplinary Research Group Of Diabetes (2017). Triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) index as a reference criterion of risk for metabolic syndrome (Met S) and low insulin sensitivity in apparently healthy subjects. Gaceta Medica de Mexico,153,152-158.

Banach, M., Penson, P.E., Fras, Z., Vrablik, M., Pella, D., Reiner, Z. [...] & behalf of the FH Europe and the International Lipid Expert Panel (ILEP) (2020). Brief recommendations on the management of adult patients with familial hypercholesterolemia during the COVID-19 pandemic. Pharmacological Research , 7, 104891.

Bermejo-Martin, J.F., Almansa, R., Torres, A., González-River, M. & Kelvin, D.J. (2020). COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovascular Research., 18, 132-133.

Buschard, K. (2020). Fenofibrate increases the amount of sulfatide which seems beneficial against Covid-19. Medical Hypotheses, 143, 110127.

Cao, X., Yin, R., Albrecht, H., Fan, D. & Tan, W. (2020). Cholesterol: A new game player accelerating vasculopothy caused by SARS-CoV-2? Downloaded from (

Casari, I., Manfredi, M., Metharom, P. & Falasca, M. (2021). Dissecting lipid metabolism alterations in SARS-CoV-2. Progress in Lipid Research., 82, 101092.

Charakida, M., Tousoulis, D., Skoumas, I., Pitsavos, C., Vasiliadou, C., Stefanadi, E., Antoniades, C., Latsios, G., Siasos, G., & Stefanadis, C. (2009). Inflammatory and thrombotic processes are associated with vascular dysfunction in children with familial hypercholesterolemia. Atherosclerosis,204, 532–537.

Choi, G. J., Kim, H. M. & Kang, H. (2020). The potential role of dyslipidemia in COVID-19 severity: an umbrella review of systematic reviews. Journal of Lipid and Atherosclerosis, 9 (3), 435-448.

Cuchel, M., Bruckert, E., Ginsberg, H. N., Raal, F. J., Santos, R. D., Hegele, R. A., Kuivenhoven, J. A., Nordestgaard, B. G., Descamps, O. S., Steinhagen-Thiessen, E., Tybjaerg-Hansen, A., Watts, G. F., Avena, M., Boileau, C., Borén, J., Catapano, A. L., Defesche, J. C., Hovingh, G. K., Humphries, S. E. & Chapman, M. J. (2014) Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. European Heart Journal, 35, 2146–2157.

Ding, X., Zhang, J., Liu, L., Yuan, X., Zang, X., Lu, F., He, P., Wang, Q., Zhang, X., Xu, Y., Li, X., Liu, Y., Li, Q., Tan, X., Zheng, Y., Lin, X., & Liu, Y. (2020). High-density lipoprotein cholesterol as a factor affecting virus clearance in covid-19 patients. Respiratory Medicine, 175, 106218.

Fedson, D.S. (2013). Treating influenza with statins and other immunomodulatory agents. Antiviral Research, 99, 417–435.

Feingold, K. R., Anawalt, B., Boyce, A., Chrousos, G., Herder, W. W., Dhataryia, K., Dungan, K., Hershman, J. M., Hofland, J., Kalra, S., Kaltsas, G., Koch, C., Kopp, P., Korbonits, M., Kovacs, C. S., Kuohung, W., Laferrère, B., Levy, M., McGee, E. & Wilson, D. P. (2000). Cholesterol lowering drugs(Eds.), Endotext.,, Inc. Copyright © 2000-2020,, Inc., South Dartmouth MA, USA

Ferrara, F. & Vitiello, A. (2021). The advantages of drug treatment with statins in patients with SARS-CoV-2 infection. Wiener klinische Wochenschrift, 133(17-18), 958–965.

Froldi, G. & Dorigo, P. (2020). Endothelial dysfunction in Coronavirus disease 2019 (COVID-19): Gender and age influences. Medical hypotheses, 144, 110015.

Garcez, M. R., Pereira, J. L., Fontanelli, M., Marchioni, D. M. & Fisberg, R. M. (2014). Prevalence of dyslipidemia according to the nutritional status in a representative sample of São Paulo. Arquivos Brasileiros de Cardiologia, 103, 476-484.

Godoi, E. T. A. M., Ramos, J. O. X., Melo, L. M. M. P., Dompieri, L. T., BrindeiroFilho, D. F. &Sarinho, E. S. C. (2020). The Role of the Endothelium in Severe COVID-19. Arquivos Brasileiros de Cardiologia., 115(6),1184-1189

Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A. & George, A. J. T. (2010). The safety and side effects of monoclonal antibodies. Nature Reviews Drug Discovery, 9, 325–338.

Hariyanto, T. I. & Kurniawan, A. (2020). Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetology and Metabolic Syndrome, 14 (53), 1463-1465.

Hariyanto, T. I., Kurniawan, A. (2020). Statin therapy did not improve the in-hospital outcome of coronavirus disease 2019 (COVID-19) infection. Diabetology and Metabolic Syndrome, 14, 1613-1615.

Hu, X., Chen, D., Wu, L., He, G. & Ye, W. (2020). Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clinica Chimica Acta, 510, 105–110.

Iqbal, Z., Ho, J. H., Adam, S., France, M., Syed, A., Neely, D., Rees, A., Khatib, R., Cegla, J., Byrne, C., Qureshi, N., Capps, N., Ferns, G., Payne, J., Schofield, J., Nicholson, K., Datta, D., Pottle, A., Halcox, J., Krentz, A., … Heart UK's Medical Scientific and Research Committee (2020). Managing hyperlipidaemia in patients with COVID-19 and during its pandemic: An expert panel position statement from HEART UK. Atherosclerosis, 313, 126–136.

Jornayvaz, F. R., Samuel, V. T., & Shulman, G. I. (2010). The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annual review of nutrition, 30, 273–290.

Kaji H. (2013). High-density lipoproteins and the immune system. Journal of lipids, 2013, 684903.

Kastelein, J. J., Ginsberg, H. N., Langslet, G., Hovingh, G. K., Ceska, R., Dufour, R., Blom, D., Civeira, F., Krempf, M., Lorenzato, C., Zhao, J., Pordy, R., Baccara-Dinet, M. T., Gipe, D. A., Geiger, M. J., & Farnier, M. (2015). ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. European heart journal, 36(43), 2996–3003.

Kayikcioglu, M., Tokgozoglu, L., Tuncel, O. K., Pirildar, S., & Can, L. (2020). Negative impact of COVID-19 pandemic on the lifestyle and management of patients with homozygous familial hypercholesterolemia. Journal of clinical lipidology, 14(6), 751–755.

Kim, J. A., Montagnani, M., Chandrasekran, S., & Quon, M. J. (2012). Role of lipotoxicity in endothelial dysfunction. Heart failure clinics, 8(4), 589–607.

Kimhofer, T., Lodge, S., Whiley, L., Gray, N., Loo, R. L., Lawler, N. G., Nitschke, P., Bong, S. H., Morrison, D. L., Begum, S., Richards, T., Yeap, B. B., Smith, C., Smith, K., Holmes, E., & Nicholson, J. K. (2020). Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic, and Amino Acid Data Reveals a Multiorgan Pathological Signature of SARS-CoV-2 Infection. Journal of proteome research, 19(11), 4442–4454.

Kwon, W.Y., Suh, G.J., Kim, K.S. & Kwak, Y.H. (2011). Niacin attenuates lung inflammation and improves survival during sepsis by downregulating the nuclear factor-κB pathway. Critical Care Medicine Journal, 39, 328–334.

Law, M. R., Wald, N. J., & Rudnicka, A. R. (2003). Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ (Clinical research ed.), 326(7404), 1423.

Lefebvre, C., J. Glanville, S. Briscoe, A. Littlewood, C. Marshall, M-I. Metzendorf, A. Noel-Storr, T. Rader, F. Shokraneh, J. Thomas, et al. (2021) Chapter 4: Searching for and selecting studies. In Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane. (accessed 10 March 2021).

Leggio, M., Villano, A., Fusco, A. & Mazza, A. (2021). Hyperlipidemia management during the COVID-19 pandemic: PCSK9 inhibitors to enhance the antiviral action of interferon. European Review for Medical and Pharmacological Sciences, 25, 2166-2167

Leslie, M. A., Cohen, D. J., Liddle, D. M., Robinson, L. E., & Ma, D. W. (2015). A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids in health and disease, 14, 53.

Li, G., Du, L., Cao, X., Wei, X., Jiang, Y., Lin, Y., Nguyen, V., Tan, W., & Wang, H. (2021). Follow-up study on serum cholesterol profiles and potential sequelae in recovered COVID-19 patients. BMC infectious diseases, 21(1), 299.

Mach, F., Baigent, C., Catapano, A. L., Koskinas, K. C., Casula, M., Badimon, L. & ESC Scientific Document Group (2019) ESC/EAS Guidelines for the management of dyslipidemias: Lipid modification to reduce cardiovascular risk. European Heart Journal, 41, 111-188.

Machowicz, R. Janka, G. & Wiktor-Jedrzejczak, W. (2017). Similar but not the same: differential diagnosis of HLH and sepsis. Critical Reviews in Oncology/Hematology, 114, 1–12.

Maiolino, G., Rossitto, G., Caielli, P., Bisogni, V., Rossi, G. P., & Calò, L. A. (2013). The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators of inflammation, 2013, 714653.

Masana, L., Correig, E., Ibarretxe, D., Anoro, E., Arroyo, J. A., Jericó, C., Guerrero, C., Miret, M., Näf, S., Pardo, A., Perea, V., Pérez-Bernalte, R., Plana, N., Ramírez-Montesinos, R., Royuela, M., Soler, C., Urquizu-Padilla, M., Zamora, A., Pedro-Botet, J., & STACOV-XULA research group (2021). Low HDL and high triglycerides predict COVID-19 severity. Scientific reports, 11(1), 7217.

McKechnie, J. L., & Blish, C. A. (2020). The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19?. Cell host & microbe, 27(6), 863–869.

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., & HLH Across Speciality Collaboration, UK (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England), 395(10229), 1033–1034.

Miller, P. E., Van Elswyk, M., & Alexander, D. D. (2014). Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. American journal of hypertension, 27(7), 885–896.

Mitacchione, G., Schiavone, M., Curnis, A., Arca, M., Antinori, S., Gasperetti, A., Mascioli, G., Severino, P., Sabato, F., Caracciolo, M. M., Arabia, G., D'Erasmo, L., Viecca, M., Mancone, M., Galli, M., & Forleo, G. B. (2021). Impact of prior statin use on clinical outcomes in COVID-19 patients: data from tertiary referral hospitals during COVID-19 pandemic in Italy. Journal of clinical lipidology, 15(1), 68–78.

Momtazi, A. A., Banach, M. & Sahebkar, A. (2017). PCSK9 inhibitors in sepsis: a new potential indication? Expert Opinion Investigational Drugs, 26,137–139.

Morens, D. M., Daszak, P., Taubenberger, J. K. (2020). Escaping Pandora’s Box - Another Novel Coronavirus. New England Journal of Medicine, 382, 1293-1295.

Ogeng'o, J., Karau, P. B., Misiani, M., Cheruiyot, I., Olabu, B., & Kariuki, B. N. (2020). Coronavirus Disease 2019 (COVID-19) set to increase burden of atherosclerotic cardiovascular disease in Kenya. The Pan African medical journal, 35(Suppl 2), 120.

Opoku, S., Gan, Y., Fu, W., Chen, D., Addo-Yobo, E., Trofimovitch, D., Yue, W., Yan, F., Wang, Z., & Lu, Z. (2019). Prevalence and risk factors for dyslipidemia among adults in rural and urban China: findings from the China National Stroke Screening and prevention project (CNSSPP). BMC public health, 19(1), 1500.

Paciullo, F., Fallarino, F., Biancon, i V., Mannarino, M., Sahebkar, A. & Pirro, M. (2017). PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. Journal of Cellular Physiology, 232,2330–2338.

Peretz, A., Azrad, M. & Blum, A. (2019). Influenza virus and atherosclerosis. QJM, 112, 749–755.

Phan, B. A., Dayspring, T. D., & Toth, P. P. (2012). Ezetimibe therapy: mechanism of action and clinical update. Vascular health and risk management, 8, 415–427.

Raal, F.J., Stein, E.A., Dufour, R., Turner, T., Civeira, F., Burgess, L., Langslet, G., Scott, R., Olsson, A.G., Sullivan, D., Hovingh, G.K., Cariou, B., Gouni-Berthold, I., Somaratne, R., Brigdes, I., Scott, R., Wasserman, S.M., Gaudet, D. & Rutheford investigators (2015). PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hyperc- holesterolaemia (RUTHERFORD-2): a randomised, double- blind, placebo-controlled trial. Lancet, 385, 331–340.

Rogero, M. M., Leão, M. C., Santana, T. M., Pimentel, M., Carlini, G., da Silveira, T., Gonçalves, R. C., & Castro, I. A. (2020). Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free radical biology & medicine, 156, 190–199.

Rogers, A. J., Guan, J., Trtchounian, A., Hunninghake, G. M., Kaimal, R., Desai, M., Kozikowski, L. A., DeSouza, L., Mogan, S., Liu, K. D., Matthay, M. A., Steingrub, J., Wheeler, A., Yoon, J. H., Nakahira, K., Choi, A. M., & Baron, R. M. (2019). Association of Elevated Plasma Interleukin-18 Level With Increased Mortality in a Clinical Trial of Statin Treatment for Acute Respiratory Distress Syndrome. Critical care medicine, 47(8), 1089–1096.

Saeed, O., Castagna, F., Agalliu, I., Xue, X., Patel, S. R., Rochlani, Y., Kataria, R., Vukelic, S., Sims, D. B., Alvarez, C., Rivas-Lasarte, M., Garcia, M. J., & Jorde, U. P. (2020). Statin Use and In-Hospital Mortality in Patients With Diabetes Mellitus and COVID-19. Journal of the American Heart Association, 9(24), e018475.

Schmidt, N. M., Wing, P., McKeating, J. A., & Maini, M. K. (2020). Cholesterol-modifying drugs in COVID-19. Oxford open immunology, 1(1), iqaa001.

Schofield, J.D., France,M., Ammori, B., Yifen, L. & Handrean, S. (2013). High-density lipoprotein cholesterol raising: does it matter? Current Opinion of Cardiology, 28,464–474.

Schol-Gelok, S., van der Hulle, T., Biedermann, J. S., van Gelder, T., Klok, F. A., van der Pol, L. M., Versmissen, J., Huisman, M. V., & Kruip, M. (2018). Clinical effects of antiplatelet drugs and statins on D-dimer levels. European journal of clinical investigation, 48(7), e12944.

Scicali, R., Di Pino, A., Piro, S., Rabuazzo, A. M., & Purrello, F. (2020). May statins and PCSK9 inhibitors be protective from COVID-19 in familial hypercholesterolemia subjects?. Nutrition, metabolism, and cardiovascular diseases : NMCD, 30(7), 1068–1069.

Soran, H., Adam, S., Mohammad, J. B., Ho, J. H., Schofield, J. D., Kwok, S., Siahmansur, T., Liu, Y., Syed, A. A., Dhage, S. S., Stefanutti, C., Donn, R., Malik, R. A., Banach, M., & Durrington, P. N. (2018). Hypercholesterolaemia - practical information for non-specialists. Archives of medical science : AMS, 14(1), 1–21.

Sorokin, A. V., Karathanasis, S. K., Yang, Z. H., Freeman, L., Kotani, K., & Remaley, A. T. (2020). COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 34(8), 9843–9853.

Soy, M., Keser, G., Atagündüz, P., Tabak, F., Atagündüz, I., & Kayhan, S. (2020). Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clinical rheumatology, 39(7), 2085–2094.

Sturley, S. L., Rajakumar, T., Hammond, N., Higaki, K., Márka, Z., Márka, S., & Munkacsi, A. B. (2020). Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity. Journal of lipid research, 61(7), 972–982.

Tall, A. R., & Yvan-Charvet, L. (2015). Cholesterol, inflammation and innate immunity. Nature reviews. Immunology, 15(2), 104–116.

Tan, W., Young, B. E., Lye, D. C., Chew, D., & Dalan, R. (2020). Statin use is associated with lower disease severity in COVID-19 infection. Scientific reports, 10(1), 17458.

Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., Mehra, M. R., Schuepbach, R. A., Ruschitzka, F., & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet (London, England), 395(10234), 1417–1418.

Vargas, M. F., Rodríguez, A.D. & Fernández, B.D. (2020). Tratamiento hipolipemiante en la era COVID-19 [Lipid treatment in the period COVID-19]. Semergen, 46(7), 497–502.

Vuorio, A., Raal, F., Kaste, M., & Kovanen, P. T. (2021). Familial hypercholesterolaemia and COVID-19: A two-hit scenario for endothelial dysfunction amenable to treatment. Atherosclerosis, 320, 53–60.

Vuorio, A., Watts, G.F. & Kovanen, P.T. (2020). Familial hypercholesterolaemia and COVID-19: triggering of increased sustained cardiovascular risk. Letter to the Editor. Journal of Internal Medicine. doi: 10.1111/joim.13070.

Vuorio, A., Watts, G.F., Schneider, W.J., Tsimikas, S. & Kovanen, P.T. (2020). Familial hypercholesterolemia and elevated lipoprotein (a): double heritable risk and new therapeutic opportunities. Journal of Internal Medicine, 287, 2–18.

Vuorio, A., & Kovanen, P. T. (2020). Prevention of endothelial dysfunction and thrombotic events in COVID-19 patients with familial hypercholesterolemia. Journal of clinical lipidology, 14(5), 617–618.

Wang, H., Yuan, Z,, Pavel, M.A. & Hansen, S.B. (2020). The role of high cholesterol in age-related COVID19 lethality. bioRxiv. 2020,

Wei, X., Zeng, W., Su, J., Wan, H., Yu, X., Cao, X., Tan, W., & Wang, H. (2020). Hypolipidemia is associated with the severity of COVID-19. Journal of clinical lipidology, 14(3), 297–304.

WHO Health Emergency DashboardWHO (COVID-19) Homepage. Access in 13 Sept 2021

Williams, K. J., & Tabas, I. (1995). The response-to-retention hypothesis of early atherogenesis. Arteriosclerosis, thrombosis, and vascular biology, 15(5), 551–561.

Wu, B., Zhou, J. H., Wang, W. X., Yang, H. L., Xia, M., Zhang, B. H., She, Z. G., & Li, H. L. (2021). Association Analysis of Hyperlipidemia with the 28-Day All-Cause Mortality of COVID-19 in Hospitalized Patients. Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih, 36(1), 17–26.

Wu, J., Song, S., Cao, H. C., & Li, L. J. (2020). Liver diseases in COVID-19: Etiology, treatment and prognosis. World journal of gastroenterology, 26(19), 2286–2293.

Yadav, R., Liu, Y., Kwok, S., Hama, S., France, M., Eatough, R., Pemberton, P., Schofield, J., Siahmansur, T. J., Malik, R., Ammori, B. A., Issa, B., Younis, N., Donn, R., Stevens, A., Durrington, P., & Soran, H. (2015). Effect of Extended-Release Niacin on High-Density Lipoprotein (HDL) Functionality, Lipoprotein Metabolism, and Mediators of Vascular Inflammation in Statin-Treated Patients. Journal of the American Heart Association, 4(9), e001508.

Yang, S. H., Du, Y., Li, X. L., Zhang, Y., Li, S., Xu, R. X., Zhu, C. G., Guo, Y. L., Wu, N. Q., Qing, P., Gao, Y., Cui, C. J., Dong, Q., Sun, J. & Li, J. J. (2017). Triglyceride to high-density lipoprotein cholesterol ratio and cardiovascular events in diabetics with coronary artery disease. American Journal of the Medical Sciences, 354, 117-124 j.amjms.2017.03.032.




How to Cite

SILVINO, J. P. de P. .; TOSATTI, J. A. G. .; JANNES, C. E. .; SILVA, I. de F. O. .; GOMES, K. B. . COVID-19, dyslipidemia and familial hypercholesterolemia: an up-date . Research, Society and Development, [S. l.], v. 11, n. 9, p. e38411931975, 2022. DOI: 10.33448/rsd-v11i9.31975. Disponível em: Acesso em: 13 aug. 2022.



Health Sciences