COVID-19, dislipidemia e hipercolesterolemia familiar: uma atualização
DOI:
https://doi.org/10.33448/rsd-v11i9.31975Palavras-chave:
Dislipidemia; Hipercolesterolemia Familiar; COVID-19; SARS-CoV-2; Hipolipemiante.Resumo
A COVID-19 (doença do coronavírus 2019) é uma infecção causada pelo coronavírus SARS-CoV-2, que pode evoluir para um quadro respiratório grave, afetando a população mundial de forma pandêmica. Neste estudo, objetivamos atualizar os achados dos mecanismos que associam a dislipidemia à infecção por COVID-19, a evolução da forma grave e a influência do tratamento hipolipemiante nos desfechos. A busca foi realizada nas bases PubMed e Embase, e a seleção foi baseada em estudos de dislipidemia e COVID-19, que resultaram em 31 artigos. Os resultados evidenciaram que alterações no metabolismo do colesterol foram encontradas na infecção pelo vírus SARS-CoV-2 com variações nos níveis de lipoproteína de alta densidade (HDL). Além disso, a infecção proporcionou aumento de triglicerídeos (TG) e colesterol da lipoproteína de muito baixa densidade (VLDLc). Pacientes com hipercolesterolemia familiar (HF) com COVID-19 representam um grupo de indivíduos que desenvolvem doença aterosclerótica precoce com maior risco de evento cardiovascular, o que deve intensificar o tratamento hipolipemiante devido ao risco potencial de disfunção endotelial coronariana causada por infecção viral. Os medicamentos modificadores do colesterol têm potencial para alterar o ciclo do vírus, resultando em uma série de efeitos pleiotrópicos na infectividade, imunidade e inflamação, como estatinas, fibratos, ezetimiba, inibidores da pró-proteína convertase-subtilisina/kexina tipo 9 (iPCSK9), ácidos graxos ômega 3, sequestrantes de ácidos biliares e ácido nicotínico. Como a dislipidemia é um dos principais fatores de risco para a forma grave de COVID-19, causando a disfunção endotelial previamente instalada em pacientes dislipidêmicos, o uso de hipolipemiantes pode reduzir o risco de fatores para o desfecho desfavorável nesses pacientes.
Referências
Abu-Farha, M., Thanaraj, T. A., Qaddoumi, M. G., Hashem, A., Abubaker, J., & Al-Mulla, F. (2020). The Role of Lipid Metabolism in COVID-19 Virus Infection and as a Drug Target. International Journal of Molecular Sciences, 21(10), 3544. https://doi.org/10.3390/ijms21103544
Alcántara-Alonso, E., Molinar-Ramos, F., González-López, J. A., Alcántara-Alonso, V., Muñoz-Pérez, M. A., Lozano-Nuevo, J. J., Benítez-Maldonado, D. R., & Mendoza-Portillo, E. (2021). High triglyceride to HDL-cholesterol ratio as a biochemical marker of severe outcomes in COVID-19 patients. Clinical Nutrition ESPEN, 44, 437–444. https://doi.org/10.1016/j.clnesp.2021.04.020
Atmosudigdo, I. S., Lim, M. A., Radi, B., Henrina, J., Yonas, E., Vania, R., & Pranata, R. (2021). Dyslipidemia Increases the Risk of Severe COVID-19: A Systematic Review, Meta-analysis, and Meta-regression. Clinical Medicine Insights: Endocrinology and Diabetes, 14, 117955142199067. https://doi.org/10.1177/1179551421990675
Baez-Duarte, B.G., Zamora-Gínez, I., González-Duarte, R., Torres-Rasgado, E., Ruiz-Vivanco, G., Pérez-Fuentes, R. & The Multidisciplinary Research Group Of Diabetes (2017). Triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) index as a reference criterion of risk for metabolic syndrome (Met S) and low insulin sensitivity in apparently healthy subjects. Gaceta Medica de Mexico,153,152-158.
Banach, M., Penson, P.E., Fras, Z., Vrablik, M., Pella, D., Reiner, Z. [...] & behalf of the FH Europe and the International Lipid Expert Panel (ILEP) (2020). Brief recommendations on the management of adult patients with familial hypercholesterolemia during the COVID-19 pandemic. Pharmacological Research , 7, 104891.
Bermejo-Martin, J.F., Almansa, R., Torres, A., González-River, M. & Kelvin, D.J. (2020). COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovascular Research., 18, 132-133.
Buschard, K. (2020). Fenofibrate increases the amount of sulfatide which seems beneficial against Covid-19. Medical Hypotheses, 143, 110127. https://doi.org/10.1016/j.mehy.2020.110127
Cao, X., Yin, R., Albrecht, H., Fan, D. & Tan, W. (2020). Cholesterol: A new game player accelerating vasculopothy caused by SARS-CoV-2? Downloaded from journals.physiology.org/journal/ajpendo (185.089.101.131)
Casari, I., Manfredi, M., Metharom, P. & Falasca, M. (2021). Dissecting lipid metabolism alterations in SARS-CoV-2. Progress in Lipid Research., 82, 101092.
Charakida, M., Tousoulis, D., Skoumas, I., Pitsavos, C., Vasiliadou, C., Stefanadi, E., Antoniades, C., Latsios, G., Siasos, G., & Stefanadis, C. (2009). Inflammatory and thrombotic processes are associated with vascular dysfunction in children with familial hypercholesterolemia. Atherosclerosis,204, 532–537.
Choi, G. J., Kim, H. M. & Kang, H. (2020). The potential role of dyslipidemia in COVID-19 severity: an umbrella review of systematic reviews. Journal of Lipid and Atherosclerosis, 9 (3), 435-448.
Cuchel, M., Bruckert, E., Ginsberg, H. N., Raal, F. J., Santos, R. D., Hegele, R. A., Kuivenhoven, J. A., Nordestgaard, B. G., Descamps, O. S., Steinhagen-Thiessen, E., Tybjaerg-Hansen, A., Watts, G. F., Avena, M., Boileau, C., Borén, J., Catapano, A. L., Defesche, J. C., Hovingh, G. K., Humphries, S. E. & Chapman, M. J. (2014) Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. European Heart Journal, 35, 2146–2157.
Ding, X., Zhang, J., Liu, L., Yuan, X., Zang, X., Lu, F., He, P., Wang, Q., Zhang, X., Xu, Y., Li, X., Liu, Y., Li, Q., Tan, X., Zheng, Y., Lin, X., & Liu, Y. (2020). High-density lipoprotein cholesterol as a factor affecting virus clearance in covid-19 patients. Respiratory Medicine, 175, 106218. https://doi.org/10.1016/j.rmed.2020.106218
Fedson, D.S. (2013). Treating influenza with statins and other immunomodulatory agents. Antiviral Research, 99, 417–435.
Feingold, K. R., Anawalt, B., Boyce, A., Chrousos, G., Herder, W. W., Dhataryia, K., Dungan, K., Hershman, J. M., Hofland, J., Kalra, S., Kaltsas, G., Koch, C., Kopp, P., Korbonits, M., Kovacs, C. S., Kuohung, W., Laferrère, B., Levy, M., McGee, E. & Wilson, D. P. (2000). Cholesterol lowering drugs(Eds.), Endotext., MDText.com, Inc. Copyright © 2000-2020, MDText.com, Inc., South Dartmouth MA, USA
Ferrara, F. & Vitiello, A. (2021). The advantages of drug treatment with statins in patients with SARS-CoV-2 infection. Wiener klinische Wochenschrift, 133(17-18), 958–965. https://doi.org/10.1007/s00508-021-01845-8
Froldi, G. & Dorigo, P. (2020). Endothelial dysfunction in Coronavirus disease 2019 (COVID-19): Gender and age influences. Medical hypotheses, 144, 110015. https://doi.org/10.1016/j.mehy.2020.110015
Garcez, M. R., Pereira, J. L., Fontanelli, M., Marchioni, D. M. & Fisberg, R. M. (2014). Prevalence of dyslipidemia according to the nutritional status in a representative sample of São Paulo. Arquivos Brasileiros de Cardiologia, 103, 476-484.
Godoi, E. T. A. M., Ramos, J. O. X., Melo, L. M. M. P., Dompieri, L. T., BrindeiroFilho, D. F. &Sarinho, E. S. C. (2020). The Role of the Endothelium in Severe COVID-19. Arquivos Brasileiros de Cardiologia., 115(6),1184-1189
Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A. & George, A. J. T. (2010). The safety and side effects of monoclonal antibodies. Nature Reviews Drug Discovery, 9, 325–338.
Hariyanto, T. I. & Kurniawan, A. (2020). Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetology and Metabolic Syndrome, 14 (53), 1463-1465.
Hariyanto, T. I., Kurniawan, A. (2020). Statin therapy did not improve the in-hospital outcome of coronavirus disease 2019 (COVID-19) infection. Diabetology and Metabolic Syndrome, 14, 1613-1615.
Hu, X., Chen, D., Wu, L., He, G. & Ye, W. (2020). Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clinica Chimica Acta, 510, 105–110.
Iqbal, Z., Ho, J. H., Adam, S., France, M., Syed, A., Neely, D., Rees, A., Khatib, R., Cegla, J., Byrne, C., Qureshi, N., Capps, N., Ferns, G., Payne, J., Schofield, J., Nicholson, K., Datta, D., Pottle, A., Halcox, J., Krentz, A., … Heart UK's Medical Scientific and Research Committee (2020). Managing hyperlipidaemia in patients with COVID-19 and during its pandemic: An expert panel position statement from HEART UK. Atherosclerosis, 313, 126–136. https://doi.org/10.1016/j.atherosclerosis.2020.09.008
Jornayvaz, F. R., Samuel, V. T., & Shulman, G. I. (2010). The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annual review of nutrition, 30, 273–290. https://doi.org/10.1146/annurev.nutr.012809.104726
Kaji H. (2013). High-density lipoproteins and the immune system. Journal of lipids, 2013, 684903. https://doi.org/10.1155/2013/684903
Kastelein, J. J., Ginsberg, H. N., Langslet, G., Hovingh, G. K., Ceska, R., Dufour, R., Blom, D., Civeira, F., Krempf, M., Lorenzato, C., Zhao, J., Pordy, R., Baccara-Dinet, M. T., Gipe, D. A., Geiger, M. J., & Farnier, M. (2015). ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. European heart journal, 36(43), 2996–3003. https://doi.org/10.1093/eurheartj/ehv370
Kayikcioglu, M., Tokgozoglu, L., Tuncel, O. K., Pirildar, S., & Can, L. (2020). Negative impact of COVID-19 pandemic on the lifestyle and management of patients with homozygous familial hypercholesterolemia. Journal of clinical lipidology, 14(6), 751–755. https://doi.org/10.1016/j.jacl.2020.09.002
Kim, J. A., Montagnani, M., Chandrasekran, S., & Quon, M. J. (2012). Role of lipotoxicity in endothelial dysfunction. Heart failure clinics, 8(4), 589–607. https://doi.org/10.1016/j.hfc.2012.06.012
Kimhofer, T., Lodge, S., Whiley, L., Gray, N., Loo, R. L., Lawler, N. G., Nitschke, P., Bong, S. H., Morrison, D. L., Begum, S., Richards, T., Yeap, B. B., Smith, C., Smith, K., Holmes, E., & Nicholson, J. K. (2020). Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic, and Amino Acid Data Reveals a Multiorgan Pathological Signature of SARS-CoV-2 Infection. Journal of proteome research, 19(11), 4442–4454. https://doi.org/10.1021/acs.jproteome.0c00519
Kwon, W.Y., Suh, G.J., Kim, K.S. & Kwak, Y.H. (2011). Niacin attenuates lung inflammation and improves survival during sepsis by downregulating the nuclear factor-κB pathway. Critical Care Medicine Journal, 39, 328–334.
Law, M. R., Wald, N. J., & Rudnicka, A. R. (2003). Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ (Clinical research ed.), 326(7404), 1423. https://doi.org/10.1136/bmj.326.7404.1423
Lefebvre, C., J. Glanville, S. Briscoe, A. Littlewood, C. Marshall, M-I. Metzendorf, A. Noel-Storr, T. Rader, F. Shokraneh, J. Thomas, et al. (2021) Chapter 4: Searching for and selecting studies. In Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane. www.training.cochrane.org/handbook (accessed 10 March 2021).
Leggio, M., Villano, A., Fusco, A. & Mazza, A. (2021). Hyperlipidemia management during the COVID-19 pandemic: PCSK9 inhibitors to enhance the antiviral action of interferon. European Review for Medical and Pharmacological Sciences, 25, 2166-2167
Leslie, M. A., Cohen, D. J., Liddle, D. M., Robinson, L. E., & Ma, D. W. (2015). A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids in health and disease, 14, 53. https://doi.org/10.1186/s12944-015-0049-7
Li, G., Du, L., Cao, X., Wei, X., Jiang, Y., Lin, Y., Nguyen, V., Tan, W., & Wang, H. (2021). Follow-up study on serum cholesterol profiles and potential sequelae in recovered COVID-19 patients. BMC infectious diseases, 21(1), 299. https://doi.org/10.1186/s12879-021-05984-1
Mach, F., Baigent, C., Catapano, A. L., Koskinas, K. C., Casula, M., Badimon, L. & ESC Scientific Document Group (2019) ESC/EAS Guidelines for the management of dyslipidemias: Lipid modification to reduce cardiovascular risk. European Heart Journal, 41, 111-188.
Machowicz, R. Janka, G. & Wiktor-Jedrzejczak, W. (2017). Similar but not the same: differential diagnosis of HLH and sepsis. Critical Reviews in Oncology/Hematology, 114, 1–12.
Maiolino, G., Rossitto, G., Caielli, P., Bisogni, V., Rossi, G. P., & Calò, L. A. (2013). The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators of inflammation, 2013, 714653. https://doi.org/10.1155/2013/714653
Masana, L., Correig, E., Ibarretxe, D., Anoro, E., Arroyo, J. A., Jericó, C., Guerrero, C., Miret, M., Näf, S., Pardo, A., Perea, V., Pérez-Bernalte, R., Plana, N., Ramírez-Montesinos, R., Royuela, M., Soler, C., Urquizu-Padilla, M., Zamora, A., Pedro-Botet, J., & STACOV-XULA research group (2021). Low HDL and high triglycerides predict COVID-19 severity. Scientific reports, 11(1), 7217. https://doi.org/10.1038/s41598-021-86747-5
McKechnie, J. L., & Blish, C. A. (2020). The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19?. Cell host & microbe, 27(6), 863–869. https://doi.org/10.1016/j.chom.2020.05.009
Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., & HLH Across Speciality Collaboration, UK (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England), 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0
Miller, P. E., Van Elswyk, M., & Alexander, D. D. (2014). Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. American journal of hypertension, 27(7), 885–896. https://doi.org/10.1093/ajh/hpu024
Mitacchione, G., Schiavone, M., Curnis, A., Arca, M., Antinori, S., Gasperetti, A., Mascioli, G., Severino, P., Sabato, F., Caracciolo, M. M., Arabia, G., D'Erasmo, L., Viecca, M., Mancone, M., Galli, M., & Forleo, G. B. (2021). Impact of prior statin use on clinical outcomes in COVID-19 patients: data from tertiary referral hospitals during COVID-19 pandemic in Italy. Journal of clinical lipidology, 15(1), 68–78. https://doi.org/10.1016/j.jacl.2020.12.008
Momtazi, A. A., Banach, M. & Sahebkar, A. (2017). PCSK9 inhibitors in sepsis: a new potential indication? Expert Opinion Investigational Drugs, 26,137–139.
Morens, D. M., Daszak, P., Taubenberger, J. K. (2020). Escaping Pandora’s Box - Another Novel Coronavirus. New England Journal of Medicine, 382, 1293-1295.
Ogeng'o, J., Karau, P. B., Misiani, M., Cheruiyot, I., Olabu, B., & Kariuki, B. N. (2020). Coronavirus Disease 2019 (COVID-19) set to increase burden of atherosclerotic cardiovascular disease in Kenya. The Pan African medical journal, 35(Suppl 2), 120. https://doi.org/10.11604/pamj.supp.2020.35.24762
Opoku, S., Gan, Y., Fu, W., Chen, D., Addo-Yobo, E., Trofimovitch, D., Yue, W., Yan, F., Wang, Z., & Lu, Z. (2019). Prevalence and risk factors for dyslipidemia among adults in rural and urban China: findings from the China National Stroke Screening and prevention project (CNSSPP). BMC public health, 19(1), 1500. https://doi.org/10.1186/s12889-019-7827-5
Paciullo, F., Fallarino, F., Biancon, i V., Mannarino, M., Sahebkar, A. & Pirro, M. (2017). PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. Journal of Cellular Physiology, 232,2330–2338.
Peretz, A., Azrad, M. & Blum, A. (2019). Influenza virus and atherosclerosis. QJM, 112, 749–755.
Phan, B. A., Dayspring, T. D., & Toth, P. P. (2012). Ezetimibe therapy: mechanism of action and clinical update. Vascular health and risk management, 8, 415–427. https://doi.org/10.2147/VHRM.S33664
Raal, F.J., Stein, E.A., Dufour, R., Turner, T., Civeira, F., Burgess, L., Langslet, G., Scott, R., Olsson, A.G., Sullivan, D., Hovingh, G.K., Cariou, B., Gouni-Berthold, I., Somaratne, R., Brigdes, I., Scott, R., Wasserman, S.M., Gaudet, D. & Rutheford investigators (2015). PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hyperc- holesterolaemia (RUTHERFORD-2): a randomised, double- blind, placebo-controlled trial. Lancet, 385, 331–340.
Rogero, M. M., Leão, M. C., Santana, T. M., Pimentel, M., Carlini, G., da Silveira, T., Gonçalves, R. C., & Castro, I. A. (2020). Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free radical biology & medicine, 156, 190–199. https://doi.org/10.1016/j.freeradbiomed.2020.07.005
Rogers, A. J., Guan, J., Trtchounian, A., Hunninghake, G. M., Kaimal, R., Desai, M., Kozikowski, L. A., DeSouza, L., Mogan, S., Liu, K. D., Matthay, M. A., Steingrub, J., Wheeler, A., Yoon, J. H., Nakahira, K., Choi, A. M., & Baron, R. M. (2019). Association of Elevated Plasma Interleukin-18 Level With Increased Mortality in a Clinical Trial of Statin Treatment for Acute Respiratory Distress Syndrome. Critical care medicine, 47(8), 1089–1096. https://doi.org/10.1097/CCM.0000000000003816
Saeed, O., Castagna, F., Agalliu, I., Xue, X., Patel, S. R., Rochlani, Y., Kataria, R., Vukelic, S., Sims, D. B., Alvarez, C., Rivas-Lasarte, M., Garcia, M. J., & Jorde, U. P. (2020). Statin Use and In-Hospital Mortality in Patients With Diabetes Mellitus and COVID-19. Journal of the American Heart Association, 9(24), e018475. https://doi.org/10.1161/JAHA.120.018475
Schmidt, N. M., Wing, P., McKeating, J. A., & Maini, M. K. (2020). Cholesterol-modifying drugs in COVID-19. Oxford open immunology, 1(1), iqaa001. https://doi.org/10.1093/oxfimm/iqaa001
Schofield, J.D., France,M., Ammori, B., Yifen, L. & Handrean, S. (2013). High-density lipoprotein cholesterol raising: does it matter? Current Opinion of Cardiology, 28,464–474.
Schol-Gelok, S., van der Hulle, T., Biedermann, J. S., van Gelder, T., Klok, F. A., van der Pol, L. M., Versmissen, J., Huisman, M. V., & Kruip, M. (2018). Clinical effects of antiplatelet drugs and statins on D-dimer levels. European journal of clinical investigation, 48(7), e12944. https://doi.org/10.1111/eci.12944
Scicali, R., Di Pino, A., Piro, S., Rabuazzo, A. M., & Purrello, F. (2020). May statins and PCSK9 inhibitors be protective from COVID-19 in familial hypercholesterolemia subjects?. Nutrition, metabolism, and cardiovascular diseases : NMCD, 30(7), 1068–1069. https://doi.org/10.1016/j.numecd.2020.05.003
Soran, H., Adam, S., Mohammad, J. B., Ho, J. H., Schofield, J. D., Kwok, S., Siahmansur, T., Liu, Y., Syed, A. A., Dhage, S. S., Stefanutti, C., Donn, R., Malik, R. A., Banach, M., & Durrington, P. N. (2018). Hypercholesterolaemia - practical information for non-specialists. Archives of medical science : AMS, 14(1), 1–21. https://doi.org/10.5114/aoms.2018.72238
Sorokin, A. V., Karathanasis, S. K., Yang, Z. H., Freeman, L., Kotani, K., & Remaley, A. T. (2020). COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 34(8), 9843–9853. https://doi.org/10.1096/fj.202001451
Soy, M., Keser, G., Atagündüz, P., Tabak, F., Atagündüz, I., & Kayhan, S. (2020). Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clinical rheumatology, 39(7), 2085–2094. https://doi.org/10.1007/s10067-020-05190-5
Sturley, S. L., Rajakumar, T., Hammond, N., Higaki, K., Márka, Z., Márka, S., & Munkacsi, A. B. (2020). Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity. Journal of lipid research, 61(7), 972–982. https://doi.org/10.1194/jlr.R120000851
Tall, A. R., & Yvan-Charvet, L. (2015). Cholesterol, inflammation and innate immunity. Nature reviews. Immunology, 15(2), 104–116. https://doi.org/10.1038/nri3793
Tan, W., Young, B. E., Lye, D. C., Chew, D., & Dalan, R. (2020). Statin use is associated with lower disease severity in COVID-19 infection. Scientific reports, 10(1), 17458. https://doi.org/10.1038/s41598-020-74492-0
Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., Mehra, M. R., Schuepbach, R. A., Ruschitzka, F., & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet (London, England), 395(10234), 1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5
Vargas, M. F., Rodríguez, A.D. & Fernández, B.D. (2020). Tratamiento hipolipemiante en la era COVID-19 [Lipid treatment in the period COVID-19]. Semergen, 46(7), 497–502. https://doi.org/10.1016/j.semerg.2020.06.014
Vuorio, A., Raal, F., Kaste, M., & Kovanen, P. T. (2021). Familial hypercholesterolaemia and COVID-19: A two-hit scenario for endothelial dysfunction amenable to treatment. Atherosclerosis, 320, 53–60. https://doi.org/10.1016/j.atherosclerosis.2021.01.021
Vuorio, A., Watts, G.F. & Kovanen, P.T. (2020). Familial hypercholesterolaemia and COVID-19: triggering of increased sustained cardiovascular risk. Letter to the Editor. Journal of Internal Medicine. doi: 10.1111/joim.13070.
Vuorio, A., Watts, G.F., Schneider, W.J., Tsimikas, S. & Kovanen, P.T. (2020). Familial hypercholesterolemia and elevated lipoprotein (a): double heritable risk and new therapeutic opportunities. Journal of Internal Medicine, 287, 2–18.
Vuorio, A., & Kovanen, P. T. (2020). Prevention of endothelial dysfunction and thrombotic events in COVID-19 patients with familial hypercholesterolemia. Journal of clinical lipidology, 14(5), 617–618. https://doi.org/10.1016/j.jacl.2020.06.006
Wang, H., Yuan, Z,, Pavel, M.A. & Hansen, S.B. (2020). The role of high cholesterol in age-related COVID19 lethality. bioRxiv. 2020, https://doi.org/10.1101/2020.05.09.086249.
Wei, X., Zeng, W., Su, J., Wan, H., Yu, X., Cao, X., Tan, W., & Wang, H. (2020). Hypolipidemia is associated with the severity of COVID-19. Journal of clinical lipidology, 14(3), 297–304. https://doi.org/10.1016/j.jacl.2020.04.008
WHO Health Emergency DashboardWHO (COVID-19) Homepage. Access in 13 Sept 2021
Williams, K. J., & Tabas, I. (1995). The response-to-retention hypothesis of early atherogenesis. Arteriosclerosis, thrombosis, and vascular biology, 15(5), 551–561. https://doi.org/10.1161/01.atv.15.5.551
Wu, B., Zhou, J. H., Wang, W. X., Yang, H. L., Xia, M., Zhang, B. H., She, Z. G., & Li, H. L. (2021). Association Analysis of Hyperlipidemia with the 28-Day All-Cause Mortality of COVID-19 in Hospitalized Patients. Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih, 36(1), 17–26. https://doi.org/10.24920/003866
Wu, J., Song, S., Cao, H. C., & Li, L. J. (2020). Liver diseases in COVID-19: Etiology, treatment and prognosis. World journal of gastroenterology, 26(19), 2286–2293. https://doi.org/10.3748/wjg.v26.i19.2286
Yadav, R., Liu, Y., Kwok, S., Hama, S., France, M., Eatough, R., Pemberton, P., Schofield, J., Siahmansur, T. J., Malik, R., Ammori, B. A., Issa, B., Younis, N., Donn, R., Stevens, A., Durrington, P., & Soran, H. (2015). Effect of Extended-Release Niacin on High-Density Lipoprotein (HDL) Functionality, Lipoprotein Metabolism, and Mediators of Vascular Inflammation in Statin-Treated Patients. Journal of the American Heart Association, 4(9), e001508. https://doi.org/10.1161/JAHA.114.001508
Yang, S. H., Du, Y., Li, X. L., Zhang, Y., Li, S., Xu, R. X., Zhu, C. G., Guo, Y. L., Wu, N. Q., Qing, P., Gao, Y., Cui, C. J., Dong, Q., Sun, J. & Li, J. J. (2017). Triglyceride to high-density lipoprotein cholesterol ratio and cardiovascular events in diabetics with coronary artery disease. American Journal of the Medical Sciences, 354, 117-124 https://doi.org/10.1016/ j.amjms.2017.03.032.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Júnea Paolucci de Paiva Silvino; Jéssica Abdo Gonçalves Tosatti; Cinthia Elim Jannes; Iêda de Fátima Oliveira Silva; Karina Braga Gomes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.