Ultrasound-assisted cinnamaldehyde nanoemulsion: optimization of operational variables, colloidal properties and in-vitro antibacterial activity

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.32115

Keywords:

Cinnamaldehyde; Nanoemulsion; Ultrasound; Antibacterial Activity; Optimization.

Abstract

Ultrasound-assisted cinnamaldehyde nanoemulsions (CNN) emerge as an energetically viable and potentially promising alternative for the controlled delivery of this bioactive organic compound. This context, the main objective of the study was to optimize the operational variables of the ultrasound-assisted production process of CNN in order to evaluate the effect of operational elements on the kinetic stability, bioactive composition and antibacterial activity of the obtained CNN. Response surface methodology (RSM) via rotational central composite design was used for fitting, when possible, second-order polynomial models. The sonication time (TS) and the amplitude of ultrasonic power (AP) were the studied factors, while the response variables corresponded to the hydrodynamic diameter (DH), the polydispersity index (PDI), the zeta potential (ZP), the turbidity (T) and the total phenolic composition (TCP), respectively. The in-vitro antibacterial activity of the obtained systems was carried out by means of the analytical methodology of diffusion on agar-well. The results showed that regardless of the TS used in the process, the lowest values for the DH and T of the nanoemulsions were obtained under conditions of low amplitude of ultrasonic power. The PDI values revealed that the NNC were monodisperse, with preserved TCP contents during the obtaining process and considerable antibacterial activity. Therefore, it was possible, by means of MSR, to propose the ideal operational conditions during the preparation and thus obtain NNC with physicochemical characteristics that reinforce their high kinetic stability and maintenance of bioactive and antimicrobial composition during processing.

References

Abbas, S., Hayat, K., Karangwa, E., Bashari, M., & Zhang, X. (2013). An overview of ultrasound-assisted food-grade nanoemulsions. Food Engineering Reviews, 5(3), 139-157. 10.1007/s12393-013-9066-3

Balaguer, M. P., Lopez-Carballo, G., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2013). Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. International journal of food microbiology, 166 (3), 369 - 377. doi.org/10.1016/j.ijfoodmicro.2013.08.012

Bhattacharya, B., Narain, V., & Bondesson, M. (2021). E-cigarette vaping liquids and the flavoring chemical cinnamaldehyde perturb bone, cartilage and vascular development in zebrafish embryos. Aquatic Toxicology, 240, 105995. doi.org/10.1016/j.aquatox.2021.105995

Buglak, N., & Bahnson, E. M. (2018). Cinnamic aldehyde increases antioxidant defenses in vascular smooth muscle cells after injury. Free Radical Biology and Medicine, 128, S22. doi.org/10.1016/j.freeradbiomed.2018.10.005

Chen, W., Xia, S., & Xiao, C. (2022). Complex coacervation microcapsules by tannic acid crosslinking prolong the antifungal activity of cinnamaldehyde against Aspergillus brasiliensis. Food Bioscience, 47, 101686. doi.org/10.1016/j.fbio.2022.101686

CLSI. (2012). Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: 22st informational supplement (M100–S22). CLSI, Wayne.

Cocchiara, J., Letizia, C. S., Lalko, J., Lapczynski, A., & Api, A. M. (2005). Fragrance material review on cinnamaldehyde. Food and chemical toxicology, 43(6), 867-923. doi.org/10.1016/j.fct.2004.09.014

Cui, H., Tang, C., Wu, S., McClements, D. J., Liu, S., Li, B., & Li, Y. (2022). Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food Chemistry, 384, 132589. doi.org/10.1016/j.foodchem.2022.132589

De Matos, R. P. A., Calmon, M. F., Amantino, C. F., Villa, L. L., Primo, F. L., Tedesco, A. C., & Rahal, P. (2018). Effect of curcumin-nanoemulsion associated with photodynamic therapy in cervical carcinoma cell lines. BioMed research international, 2018.). 10.1155/2018/4057959

De Oliveira, T. V., de Freitas, P. A. V., Pola, C. C., da Silva, J. O. R., Diaz, L. D. A., Ferreira, S. O., & de FF Soares, N. (2020). Development and optimization of antimicrobial active films produced with a reinforced and compatibilized biodegradable polymers. Food Packaging and Shelf Life, 24, 100459. doi.org/10.1016/j.fpsl.2019.100459

Doost, A. S., Nasrabadi, M. N., Kassozi, V., Nakisozi, H., & Van der Meeren, P. (2020). Recent advances in food colloidal delivery systems for essential oils and their main components. Trends in Food Science & Technology, 99, 474-486. doi.org/10.1016/j.tifs.2020.03.037

Doyle, A. A., & Stephens, J. C. (2019). A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia, 139, 104405. doi.org/10.1016/j.fitote.2019.104405

Falleh, H., Jemaa, M. B., Neves, M. A., Isoda, H., Nakajima, M., & Ksouri, R. (2021). Peppermint and Myrtle nanoemulsions: Formulation, stability, and antimicrobial activity. LWT, 152, 112377. doi.org/10.1016/j.lwt.2021.112377

Gaikwad, S. G., & Pandit, A. B. (2008). Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics sonochemistry, 15(4), 554-563. doi.org/10.1016/j.ultsonch.2007.06.011

Gauthier, G., & Capron, I. (2021). Pickering nanoemulsions: an overview of manufacturing processes, formulations, and applications. JCIS Open, 4, 100036. doi.org/10.1016/j.jciso.2021.100036

Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44(1), 60-72. doi.org/10.1016/j.bej.2008.10.006

Gomes, A., Costa, A. L. R., & Cunha, R. L. (2018). Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features. Colloids and Surfaces B: Biointerfaces, 164, 272-280. 10.1016/j.colsurfb.2018.01.032

Gul, O., Saricaoglu, F. T., Besir, A., Atalar, I., & Yazici, F. (2018). Effect of ultrasound treatment on the properties of nano-emulsion films obtained from hazelnut meal protein and clove essential oil. Ultrasonics sonochemistry, 41, 466-474. doi.org/10.1016/j.ultsonch.2017.10.011

Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft matter, 12(11), 2826-2841. 10.1039/C5SM02958A

Hou, K., Xu, Y., Cen, K., Gao, C., Feng, X., & Tang, X. (2021). Nanoemulsion of cinnamon essential oil Co-emulsified with hydroxypropyl-β-cyclodextrin and Tween-80: Antibacterial activity, stability and slow release performance. Food Bioscience, 43, 101232. doi.org/10.1016/j.fbio.2021.101232

Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food hydrocolloids, 22 (7), 1191-1202. doi.org/10.1016/j.foodhyd.2007.09.006

Karim, M., Fathi, M., & Soleimanian-Zad, S. (2021). Nanoencapsulation of cinnamic aldehyde using zein nanofibers by novel needle-less electrospinning: Production, characterization and their application to reduce nitrite in sausages. Journal of Food Engineering, 288, 110140. doi.org/10.1016/j.jfoodeng.2020.110140

Kim, H. O., Park, S. W., & Park, H. D. (2004). Inactivation of Escherichia coli O157: H7 by cinnamic aldehyde purified from Cinnamomum cassia shoot. Food Microbiology, 21(1), 105-110. doi.org/10.1016/S0740-0020(03)00010-8

Komaiko, J., & McClements, D. J. (2015). Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of food engineering, 146, 122-128. doi.org/10.1016/j.jfoodeng.2014.09.003

Li, M. K., & Fogler, H. S. (1978). Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. Journal of Fluid Mechanics, 88(3), 499-511. 10.1017/S0022112078002232

Louis, E., Villalobos-Carvajal, R., Reyes-Parra, J., Jara-Quijada, E., Ruiz, C., Andrades, P., Gacitúa, J, Beldarraín-Iznaga, T., & Beldarraín-Iznaga, T. (2021). Preservation of mushrooms (Agaricus bisporus) by an alginate-based-coating containing a cinnamaldehyde essential oil nanoemulsion. Food Packaging and Shelf Life, 28, 100662. doi.org/10.1016/j.fpsl.2021.100662.

Mahdi Jafari, S., He, Y., & Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization—a comparison. International journal of food properties, 9(3), 475-485.doi.org/10.1080/10942910600596464

Mason, T. J., & Lorimer, J. P. (2002). Applied sonochemistry: the uses of power ultrasound in chemistry and processing (Vol. 10). Weinheim: Wiley-Vch.

McClements, D. J. (2004). Food emulsions: principles, practices, and techniques. CRC press. doi.org/10.1201/9781420039436

McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 7(6), 2297-2316. 10.1039/c0sm00549e

McClements, D. J., & Jafari, S. M. (2018). Chapter 1—General aspects of nanoemulsions and their formulation. Nanoemulsions (pp. 3Ā20). doi.org/10.1016/B978-0-12-811838-2.00001-1

Miller, N. (1950). Chemical action of sound waves on aqueous solutions. Transactions of the Faraday Society, 46, 546-550. 10.1039/tf9504600546

Montgomery, D. C. (2001). Design and analysis of experiments Fifth Edition. By John Wiley & Sons, Inc.

Myers, R. H., Montgomery, D. C., e Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley e Sons. (4th ed.), Wiley, New York, (Chapter 2).

Nascimento, L. G. L., Casanova, F., Silva, N. F. N., de Carvalho Teixeira, Á. V. N., Júnior, P. P. D. S. P., Vidigal, M. C. T. R., Stringheta, P. C., & de Carvalho, A. F. (2020). Use of a crosslinked casein micelle hydrogel as a carrier for jaboticaba (Myrciaria cauliflora) extract. Food Hydrocolloids, 106, 105872. doi.org/10.1016/j.foodhyd.2020.105872.

Noori, S., Zeynali, F., & Almasi, H. (2018). Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food control, 84, 312-320. doi.org/10.1016/j.foodcont.2017.08.015

Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of agricultural and food chemistry, 26(3), 716-723. doi.org/10.1021/jf60217a041

Qi, H., Chen, S., Zhang, J., & Liang, H. (2022). Robust stability and antimicrobial activity of d-limonene nanoemulsion by sodium caseinate and high pressure homogenization. Journal of Food Engineering, 111159. doi.org/10.1016/j.jfoodeng.2022.111159

Riesz, P., & Kondo, T. (1992). Free radical formation induced by ultrasound and its biological implications. Free Radical Biology and medicine, 13(3), 247-270. 10.1016/0891-5849(92)90021-8

Sharma, N., Kaur, G., & Khatkar, S. K. (2021). Optimization of emulsification conditions for designing ultrasound assisted curcumin loaded nanoemulsion: Characterization, antioxidant assay and release kinetics. LWT, 141, 110962. doi.org/10.1016/j.lwt.2021.110962

Shreaz, S., Bhatia, R., Khan, N., Maurya, I. K., Ahmad, S. I., Muralidhar, S., Manzoor, N., & Khan, L. A. (2012). Cinnamic aldehydes affect hydrolytic enzyme secretion and morphogenesis in oral Candida isolates. Microbial pathogenesis, 52 (5), 251-258. doi.org/10.1016/j.micpath.2011.11.005

Shreaz, S., Wani, W. A., Behbehani, J. M., Raja, V., Irshad, M., Karched, M., Ali, I., Siddiqi, W. A. & Hun, L. T. (2016). Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia, 112, 116-131. doi.org/10.1016/j.fitote.2016.05.016

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.

Song, F., Li, H., Sun, J., & Wang, S. (2013). Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats. Journal of ethnopharmacology, 150(1), 125-130. doi.org/10.1016/j.jep.2013.08.019

Sun, Y., Zhang, M., Bhandari, B., & Bai, B. (2021). Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application. Food Control, 127, 108151. doi.org/10.1016/j.foodcont.2021.108151

Suslick, K. S. (1989). The chemical effects of ultrasound. Scientific American, 260(2), 80-87.

Thirapanmethee, K., Kanathum, P., Khuntayaporn, P., Huayhongthong, S., Surassmo, S., & Chomnawang, M. T. (2021). Cinnamaldehyde: A plant-derived antimicrobial for overcoming multidrug-resistant Acinetobacter baumannii infection. European Journal of Integrative Medicine, 48, 101376. doi.org/10.1016/j.eujim.2021.101376

Uthumpa, C., Indranupakorn, R., & Asasutjarit, R. (2013). Development of nanoemulsion formulations of ginger extract. In Advanced materials research (Vol. 684, pp. 12-15). Trans Tech Publications Ltd. doi.org/10.4028/www.scientific.net/AMR.684.12.

Varghese, M., & Balachandran, M. (2021). Antibacterial efficiency of carbon dots against Gram-positive and Gram-negative bacteria: A review. Journal of Environmental Chemical Engineering, 9(6), 106821.doi.org/10.1016/j.jece.2021.106821

Wan, C. J., Zhang, Y., Liu, C. X., & Yang, Z. C. (2022). Cinnamic aldehyde, isolated from Cinnamomum cassia, alone and in combination with pyrazinamide against Mycobacterium tuberculosis in vitro and in vivo. South African Journal of Botany, 144, 200-205. doi.org/10.1016/j.sajb.2021.08.009

Wood, R. W., & Loomis, A. L. (1927). XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 4(22), 417-436. doi.org/10.1080/14786440908564348

Zhang, J., Peppard, T. L., & Reineccius, G. A. (2015). Preparation and characterization of nanoemulsions stabilized by food biopolymers using microfluidization. Flavour and Fragrance Journal, 30(4), 288-294. doi.org/10.1002/ffj.3244

Zheng, B., Qi, J., Yang, Y., Li, L., Liu, Y., Han, X., Qu., We., & Chu, L. (2022). Mechanisms of cinnamic aldehyde against myocardial ischemia/hypoxia injury in vivo and in vitro: Involvement of regulating PI3K/AKT signaling pathway. Biomedicine & Pharmacotherapy, 147, 112674. doi.org/10.1016/j.biopha.2022.112674

Published

15/07/2022

How to Cite

RIBEIRO, A. R. C. .; OLIVEIRA, T. V. de .; BAFFA JÚNIOR, J. C. .; BASTOS, M. do S. R. .; BATISTA, L. F. .; TEIXEIRA, S. C. T.; SOARES, N. de F. F. . Ultrasound-assisted cinnamaldehyde nanoemulsion: optimization of operational variables, colloidal properties and in-vitro antibacterial activity. Research, Society and Development, [S. l.], v. 11, n. 9, p. e45711932115, 2022. DOI: 10.33448/rsd-v11i9.32115. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32115. Acesso em: 22 nov. 2024.

Issue

Section

Exact and Earth Sciences