Nanoemulsão de cinamaldeído assistida por ultrassom: otimização das variáveis operacionais, propriedades coloidais e atividade antibacteriana in-vitro
DOI:
https://doi.org/10.33448/rsd-v11i9.32115Palavras-chave:
Cinamaldeído; Nanoemulsão; Ultrassom; Atividade antibacteriana; Otimização.Resumo
Nanoemulsões de cinamaldeído (NNC) assistidas por ultrassom, surgem como uma alternativa energeticamente viável e potencialmente promissora para a entrega controlada desse composto orgânico bioativo. Nesse contexto, o objetivo central do estudo consistiu na otimização das variáveis operacionais do processo de produção assistida por ultrassom de NNC, a fim de avaliar o efeito dos elementos operacionais na estabilidade cinética, composição bioativa e atividade antibacteriana das NNC obtidas. A metodologia de superfície de resposta (MSR), via delineamento composto central rotacional foi utilizada para o ajuste, quando possível, dos modelos polinomiais de segunda ordem. O tempo de sonicação (TS) e a amplitude da potência (AP) ultrassônica foram os fatores estudados, enquanto as variáveis respostas corresponderam, respectivamente ao diâmetro hidrodinâmico (DH), ao índice de polidispersidade (PDI), ao potencial zeta (PZ), a turbidez (T) e a composição fenólica total (CFT). A atividade antibacteriana in-vitro dos sistemas obtidos foi realizada por meio da metodologia analítica de difusão em ágar-poço. Os resultados mostraram que independentemente do TS utilizado no processo, os menores valores para o DH e a T das nanoemulsões foram obtidos em condições otimizadas com baixa amplitude da potência ultrassônica. Os valores de PDI revelaram que as NNC eram monodispersas, com teores de CFT preservados durante o processo de obtenção e considerável atividade antibacteriana. Logo, foi possível, por meio da MSR propor as condições operacionais ideais durante o preparo e assim obter NNC com características físico-químicas que reforçam a sua elevada estabilidade cinética e manutenção da composição bioativa e antimicrobiana durante o processamento.
Referências
Abbas, S., Hayat, K., Karangwa, E., Bashari, M., & Zhang, X. (2013). An overview of ultrasound-assisted food-grade nanoemulsions. Food Engineering Reviews, 5(3), 139-157. 10.1007/s12393-013-9066-3
Balaguer, M. P., Lopez-Carballo, G., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2013). Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. International journal of food microbiology, 166 (3), 369 - 377. doi.org/10.1016/j.ijfoodmicro.2013.08.012
Bhattacharya, B., Narain, V., & Bondesson, M. (2021). E-cigarette vaping liquids and the flavoring chemical cinnamaldehyde perturb bone, cartilage and vascular development in zebrafish embryos. Aquatic Toxicology, 240, 105995. doi.org/10.1016/j.aquatox.2021.105995
Buglak, N., & Bahnson, E. M. (2018). Cinnamic aldehyde increases antioxidant defenses in vascular smooth muscle cells after injury. Free Radical Biology and Medicine, 128, S22. doi.org/10.1016/j.freeradbiomed.2018.10.005
Chen, W., Xia, S., & Xiao, C. (2022). Complex coacervation microcapsules by tannic acid crosslinking prolong the antifungal activity of cinnamaldehyde against Aspergillus brasiliensis. Food Bioscience, 47, 101686. doi.org/10.1016/j.fbio.2022.101686
CLSI. (2012). Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: 22st informational supplement (M100–S22). CLSI, Wayne.
Cocchiara, J., Letizia, C. S., Lalko, J., Lapczynski, A., & Api, A. M. (2005). Fragrance material review on cinnamaldehyde. Food and chemical toxicology, 43(6), 867-923. doi.org/10.1016/j.fct.2004.09.014
Cui, H., Tang, C., Wu, S., McClements, D. J., Liu, S., Li, B., & Li, Y. (2022). Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food Chemistry, 384, 132589. doi.org/10.1016/j.foodchem.2022.132589
De Matos, R. P. A., Calmon, M. F., Amantino, C. F., Villa, L. L., Primo, F. L., Tedesco, A. C., & Rahal, P. (2018). Effect of curcumin-nanoemulsion associated with photodynamic therapy in cervical carcinoma cell lines. BioMed research international, 2018.). 10.1155/2018/4057959
De Oliveira, T. V., de Freitas, P. A. V., Pola, C. C., da Silva, J. O. R., Diaz, L. D. A., Ferreira, S. O., & de FF Soares, N. (2020). Development and optimization of antimicrobial active films produced with a reinforced and compatibilized biodegradable polymers. Food Packaging and Shelf Life, 24, 100459. doi.org/10.1016/j.fpsl.2019.100459
Doost, A. S., Nasrabadi, M. N., Kassozi, V., Nakisozi, H., & Van der Meeren, P. (2020). Recent advances in food colloidal delivery systems for essential oils and their main components. Trends in Food Science & Technology, 99, 474-486. doi.org/10.1016/j.tifs.2020.03.037
Doyle, A. A., & Stephens, J. C. (2019). A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia, 139, 104405. doi.org/10.1016/j.fitote.2019.104405
Falleh, H., Jemaa, M. B., Neves, M. A., Isoda, H., Nakajima, M., & Ksouri, R. (2021). Peppermint and Myrtle nanoemulsions: Formulation, stability, and antimicrobial activity. LWT, 152, 112377. doi.org/10.1016/j.lwt.2021.112377
Gaikwad, S. G., & Pandit, A. B. (2008). Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics sonochemistry, 15(4), 554-563. doi.org/10.1016/j.ultsonch.2007.06.011
Gauthier, G., & Capron, I. (2021). Pickering nanoemulsions: an overview of manufacturing processes, formulations, and applications. JCIS Open, 4, 100036. doi.org/10.1016/j.jciso.2021.100036
Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44(1), 60-72. doi.org/10.1016/j.bej.2008.10.006
Gomes, A., Costa, A. L. R., & Cunha, R. L. (2018). Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features. Colloids and Surfaces B: Biointerfaces, 164, 272-280. 10.1016/j.colsurfb.2018.01.032
Gul, O., Saricaoglu, F. T., Besir, A., Atalar, I., & Yazici, F. (2018). Effect of ultrasound treatment on the properties of nano-emulsion films obtained from hazelnut meal protein and clove essential oil. Ultrasonics sonochemistry, 41, 466-474. doi.org/10.1016/j.ultsonch.2017.10.011
Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft matter, 12(11), 2826-2841. 10.1039/C5SM02958A
Hou, K., Xu, Y., Cen, K., Gao, C., Feng, X., & Tang, X. (2021). Nanoemulsion of cinnamon essential oil Co-emulsified with hydroxypropyl-β-cyclodextrin and Tween-80: Antibacterial activity, stability and slow release performance. Food Bioscience, 43, 101232. doi.org/10.1016/j.fbio.2021.101232
Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food hydrocolloids, 22 (7), 1191-1202. doi.org/10.1016/j.foodhyd.2007.09.006
Karim, M., Fathi, M., & Soleimanian-Zad, S. (2021). Nanoencapsulation of cinnamic aldehyde using zein nanofibers by novel needle-less electrospinning: Production, characterization and their application to reduce nitrite in sausages. Journal of Food Engineering, 288, 110140. doi.org/10.1016/j.jfoodeng.2020.110140
Kim, H. O., Park, S. W., & Park, H. D. (2004). Inactivation of Escherichia coli O157: H7 by cinnamic aldehyde purified from Cinnamomum cassia shoot. Food Microbiology, 21(1), 105-110. doi.org/10.1016/S0740-0020(03)00010-8
Komaiko, J., & McClements, D. J. (2015). Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of food engineering, 146, 122-128. doi.org/10.1016/j.jfoodeng.2014.09.003
Li, M. K., & Fogler, H. S. (1978). Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. Journal of Fluid Mechanics, 88(3), 499-511. 10.1017/S0022112078002232
Louis, E., Villalobos-Carvajal, R., Reyes-Parra, J., Jara-Quijada, E., Ruiz, C., Andrades, P., Gacitúa, J, Beldarraín-Iznaga, T., & Beldarraín-Iznaga, T. (2021). Preservation of mushrooms (Agaricus bisporus) by an alginate-based-coating containing a cinnamaldehyde essential oil nanoemulsion. Food Packaging and Shelf Life, 28, 100662. doi.org/10.1016/j.fpsl.2021.100662.
Mahdi Jafari, S., He, Y., & Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization—a comparison. International journal of food properties, 9(3), 475-485.doi.org/10.1080/10942910600596464
Mason, T. J., & Lorimer, J. P. (2002). Applied sonochemistry: the uses of power ultrasound in chemistry and processing (Vol. 10). Weinheim: Wiley-Vch.
McClements, D. J. (2004). Food emulsions: principles, practices, and techniques. CRC press. doi.org/10.1201/9781420039436
McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 7(6), 2297-2316. 10.1039/c0sm00549e
McClements, D. J., & Jafari, S. M. (2018). Chapter 1—General aspects of nanoemulsions and their formulation. Nanoemulsions (pp. 3Ā20). doi.org/10.1016/B978-0-12-811838-2.00001-1
Miller, N. (1950). Chemical action of sound waves on aqueous solutions. Transactions of the Faraday Society, 46, 546-550. 10.1039/tf9504600546
Montgomery, D. C. (2001). Design and analysis of experiments Fifth Edition. By John Wiley & Sons, Inc.
Myers, R. H., Montgomery, D. C., e Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley e Sons. (4th ed.), Wiley, New York, (Chapter 2).
Nascimento, L. G. L., Casanova, F., Silva, N. F. N., de Carvalho Teixeira, Á. V. N., Júnior, P. P. D. S. P., Vidigal, M. C. T. R., Stringheta, P. C., & de Carvalho, A. F. (2020). Use of a crosslinked casein micelle hydrogel as a carrier for jaboticaba (Myrciaria cauliflora) extract. Food Hydrocolloids, 106, 105872. doi.org/10.1016/j.foodhyd.2020.105872.
Noori, S., Zeynali, F., & Almasi, H. (2018). Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food control, 84, 312-320. doi.org/10.1016/j.foodcont.2017.08.015
Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of agricultural and food chemistry, 26(3), 716-723. doi.org/10.1021/jf60217a041
Qi, H., Chen, S., Zhang, J., & Liang, H. (2022). Robust stability and antimicrobial activity of d-limonene nanoemulsion by sodium caseinate and high pressure homogenization. Journal of Food Engineering, 111159. doi.org/10.1016/j.jfoodeng.2022.111159
Riesz, P., & Kondo, T. (1992). Free radical formation induced by ultrasound and its biological implications. Free Radical Biology and medicine, 13(3), 247-270. 10.1016/0891-5849(92)90021-8
Sharma, N., Kaur, G., & Khatkar, S. K. (2021). Optimization of emulsification conditions for designing ultrasound assisted curcumin loaded nanoemulsion: Characterization, antioxidant assay and release kinetics. LWT, 141, 110962. doi.org/10.1016/j.lwt.2021.110962
Shreaz, S., Bhatia, R., Khan, N., Maurya, I. K., Ahmad, S. I., Muralidhar, S., Manzoor, N., & Khan, L. A. (2012). Cinnamic aldehydes affect hydrolytic enzyme secretion and morphogenesis in oral Candida isolates. Microbial pathogenesis, 52 (5), 251-258. doi.org/10.1016/j.micpath.2011.11.005
Shreaz, S., Wani, W. A., Behbehani, J. M., Raja, V., Irshad, M., Karched, M., Ali, I., Siddiqi, W. A. & Hun, L. T. (2016). Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia, 112, 116-131. doi.org/10.1016/j.fitote.2016.05.016
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
Song, F., Li, H., Sun, J., & Wang, S. (2013). Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats. Journal of ethnopharmacology, 150(1), 125-130. doi.org/10.1016/j.jep.2013.08.019
Sun, Y., Zhang, M., Bhandari, B., & Bai, B. (2021). Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application. Food Control, 127, 108151. doi.org/10.1016/j.foodcont.2021.108151
Suslick, K. S. (1989). The chemical effects of ultrasound. Scientific American, 260(2), 80-87.
Thirapanmethee, K., Kanathum, P., Khuntayaporn, P., Huayhongthong, S., Surassmo, S., & Chomnawang, M. T. (2021). Cinnamaldehyde: A plant-derived antimicrobial for overcoming multidrug-resistant Acinetobacter baumannii infection. European Journal of Integrative Medicine, 48, 101376. doi.org/10.1016/j.eujim.2021.101376
Uthumpa, C., Indranupakorn, R., & Asasutjarit, R. (2013). Development of nanoemulsion formulations of ginger extract. In Advanced materials research (Vol. 684, pp. 12-15). Trans Tech Publications Ltd. doi.org/10.4028/www.scientific.net/AMR.684.12.
Varghese, M., & Balachandran, M. (2021). Antibacterial efficiency of carbon dots against Gram-positive and Gram-negative bacteria: A review. Journal of Environmental Chemical Engineering, 9(6), 106821.doi.org/10.1016/j.jece.2021.106821
Wan, C. J., Zhang, Y., Liu, C. X., & Yang, Z. C. (2022). Cinnamic aldehyde, isolated from Cinnamomum cassia, alone and in combination with pyrazinamide against Mycobacterium tuberculosis in vitro and in vivo. South African Journal of Botany, 144, 200-205. doi.org/10.1016/j.sajb.2021.08.009
Wood, R. W., & Loomis, A. L. (1927). XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 4(22), 417-436. doi.org/10.1080/14786440908564348
Zhang, J., Peppard, T. L., & Reineccius, G. A. (2015). Preparation and characterization of nanoemulsions stabilized by food biopolymers using microfluidization. Flavour and Fragrance Journal, 30(4), 288-294. doi.org/10.1002/ffj.3244
Zheng, B., Qi, J., Yang, Y., Li, L., Liu, Y., Han, X., Qu., We., & Chu, L. (2022). Mechanisms of cinnamic aldehyde against myocardial ischemia/hypoxia injury in vivo and in vitro: Involvement of regulating PI3K/AKT signaling pathway. Biomedicine & Pharmacotherapy, 147, 112674. doi.org/10.1016/j.biopha.2022.112674
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Alane Rafaela Costa Ribeiro; Taíla Veloso de Oliveira; José Carlos Baffa Júnior; Maria do Socorro Rocha Bastos; Lais Fernanda Batista; Samiris Côcco Teixeira Teixeira; Nilda de Fátima Ferreira Soares
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.