Fungal amylases applied to the sweet potato starch for bioethanol production

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.32583

Keywords:

Amylases; Sweet potato; Bioethanol production; E. endophytica; N. cubana; F. pseudocircinatum.

Abstract

Bioethanol is a sustainable energy source to help reducing the emission of pollutants into the global environment. In order to cope with that, the ethanol production technologies and use of efficient and low-cost substrates are developed. The objective of this research was to evaluate fungal amylases in sweet potato starch for bioethanol production by Saccharomyces cerevisiae in the laboratory. Endomelanconiopsis endophytica (1.40 U/mL), Neopestalotiopsis cubana (1.67 U/mL) and Fusarium pseudocircinatum (1.11 U/mL) with high enzymatic activities were selected and their amylases were tested for activity on sweet potato starch for bioethanol production. Simultaneous saccharification and fermentation was performed at 30° C and pH = 5.0. 17.3 - 88.1 (%) of bioethanol that was produced and compared to the expected theoretical yield. Therefore, amylases from these fungi simultaneously inserted on sweet potato starch and S. cerevisiae are potentially useful for bioethanol production.

Author Biographies

Tiago Carnevalle Romão, Instituto Federal Goiano

Professor. Department of Biological Sciences

Antonio Carlos Pereira de Menezes Filho, Instituto Federal Goiano

Doctoral student, Agricultural Sciences

Aristeu Gomes Tininis, Instituto Federal de São Paulo

Professor, Department of Chemistry

Marilene Silva Oliveira, Instituto Federal Goiano

Professor, Multi-User Analysis Center 

Lidiane Gaspareto Felippe, Universidade Estadual Paulista

Professor. Chemistry Institute.

Carlos Frederico de Souza Castro, Instituto Federal Goiano

Professor, Department of Agrochemistry

Paula Benevides de Morais, Universidade Federal do Tocantins

Professor, Environmental Microbiology and Biotechnology Laboratory

References

Aditiya, H. B., Mahlia, T.M.I., Chong,W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews. 66, 631–653. https://doi.org/10.1016/j.rser.2016.07.015

Aguiar Neto Filho, M. (2017). Bioprospecção de fungos amilolíticos para produção de etanol. [Unpublished master’s dissertation, Instituto Federal Goiano].

Aitken, A.; Learnmoth, M.P. (2002). Protein determination by UV absorption. In: Walker, J.M. (Ed.), The protein protocols handbook (2nd ed., pp. 3-6). Totowa: Human Presse Inc. https://doi.org/10.1385/1-59259-169-8:3

Almeida, P. Z. (2015). Diversidade do potencial amilolítico em fungos filamentosos: purificação e caracterização de uma glucoamilase de Aspergillus brasiliensis. [Master’s dissertation, Universidade de São Paulo]. http:// www.teses.usp. https://doi:10.11606/D.59.2015.tde-15052015-085904

Aruna, A., Nagavalli, M., Girijashankar, V., Ponamgi, S. P. D., Swathisree, V., & Rao, L.V. (2014). Direct bioethanol production by amylolytic yeast Candida albicans. Letters in Applied Microbiology, 60, 229–236. https://doi.org/10.1111/lam.12348

Astolfi, A. L. (2019). Sacarificação e fermentação simultânea de biomassa de alga e amido e uso de resíduo do processo de fermentação para obtenção de biopetídeo. [Master’s dissertation, Universidade de Passo Fundo]. http:// http://tede.upf.br/jspui/handle/tede/1796

Beltagy, E. A., Abouelwafa, A., & Barakat, K. M. (2022). Bioethanol production from immobilized amylase produced by marine Aspergillus flavus AUMC10636. The Egyptian Journal of Aquatic Research. https://doi.org/10.1016/j.ejar.2022.02.003

Douanla-Meli, C., & Scharnhorst, A. (2021). Palm Foliage as Pathways of Pathogenic Botryosphaeriaceae Fungi and Host of New Lasiodiplodia Species from Mexico. Pathogens, 10(10), 1297. https://doi.org/10.3390/pathogens10101297

Favaro, L., Viktor, M. J., Rose, S. H., Viljoen‐Bloom, M., ... & Casella, S. (2015). Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases. Biotechnology and bioengineering, 112(9), 1751-1760. https://doi.org/10.1002/bit.25591

Ferreira, M. C., Vieira, M. L. A., Zani, C. L., Alves, T. M. A., Sales Junior, P. A., Murta, S. M., ... & Rosa, L. H. (2016). Molecular phylogeny, diversity, symbiosis and discover of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae). Biochemical Systematics and Ecology, 59, 36-44. http://dx.doi.org/10.1016/j.bse.2014.12.017

Ghose, T. K. (1987). Measurement of Cellulase Activities. Pure & Applied Chemistry., 59(2), 257-268. https://doi.org/10.1351/pac198759020257

Gonçalves, D. B., Batista, A. F., Rodrigues, M. Q. R. B., Nogueira, K. M. V., & Santos, V. L. (2013). Ethanol production from macaúba (Acrocomia aculeata) presscake hemicellulosic hydrolysate by Candida boidinii UFMG14. Bioresource. Technology, 146, 261–266. https://doi.org/10.1016/j.biortech.2013.07.075

Gronchi, N., Favaro, L., Cagnin, L., Brojanigo, S., Pizzocchero, V., Basaglia, M., & Casella, S. (2019). Novel yeast strains for the efficient saccharification and fermentation of starchy by-products to bioethanol. Energies, 12(4), 714. https://doi.org/10.3390/en12040714

International Energy Agency. (2021). World Energy Balances: Overview. https://www.iea.org/reports/world-energy-balances-overview

Kee, Y. J., Zakaria, L., & Mohd, M. H. (2020). Morphology, phylogeny and pathogenicity of Fusarium species from Sansevieria trifasciata in Malaysia. Plant Pathology, 69, 442–454. https://doi.org/10.1111/ppa.13138

Kumar, S., Grewal, J., Sadaf, A., Hemamalini, R., & Khare, S. K. (2016). Halophiles as a source of polyextremophilic α-amylase for industrial applications. AIMS Microbiology, 2 (1), 1-26. https://doi.org/10.3934/microbiol.2016.1.1

Layne, E. (1957.). Spectrophotometric and turbidimetric methods for measuring proteins. Methods in Enzymology, 3, 447-455. https://doi.org/10.1016/S0076-6879(57)03413-8

Li, L., Yang, Q., & Li, H. (2021). Morphology, Phylogeny, and Pathogenicity of Pestalotioid Species on Camellia oleifera in China. Journal of Fungi (Basel, Switzerland), 7(12), 1080. https://doi.org/10.3390/jof7121080

Machado, C.M.M., & Abreu, F.R. (2006). Produção de álcool a partir de carboidratos. Revista de Política Agrícola, 15 (3), 64-78. https://www.alice.cnptia.embrapa.br/handle/doc/121716

Marco, J. da D. C. I. de., Souza Neto, G. P. de., Castro, C. F. de S., Michelin, M., Polizeli, M. L.T.M., & Filho, E. X. F. (2015). "Partial Purification and Characterization of a Thermostable β-Mannanase from Aspergillus foetidus" Applied Sciences. 5(4), 881-893. https://doi.org/10.3390/app5040881

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-428. https://doi.org/10.1021/ac60147a030

Ministério das Minas e Energia, Governo Federal do Brasil. Balanço Energético Nacional – Ano base 2020. (2021). https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2021. Access date: 15/08/2021.

Morais, R. R., Pascoal, A. M., Pereira-Júnior, M. A., Batista, K. A., Rodriguez, A. G., & Fernandes, K. F. (2019). Bioethanol production from Solanum lycocarpum starch: A sustainable non-food energy source for biofuels. Renewable Energy, 140, 361-366. https://doi.org/10.1016/j.renene.2019.02.056

Papanikolaou, S.; Aggelis, G. 2002. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology., 82(1), p. 43–49. https://doi.org/10.1016/S0960-8524(01)00149-3

Prasoulas, G., Gentikis, A., Konti, A., Kalantzi, S., Kekos, D., & Mamma, D. (2020). Bioethanol production from food waste applying the multienzyme system produced on-site by Fusarium oxysporum F3 and mixed microbial cultures. Fermentation, 6 (2), 39. https://doi.org/10.3390/fermentation6020039

Romão, T. C., Menezes-Filho, A. C. P., Harakava, R., Castro, C. F. S., & Morais, P. B. (2024). Molecular and morphological diversity, qualitative chemical profile and antioxidant activity of filamentous fungi of the digestive tract of Phylloicus sp. (Trichoptera: Calamoceratidae). Brazilian Journal of Biology, 84, e259983. https://doi.org/10.1590/1519-6984.259983

Santillán-Mendoza, R., Fernández-Pavía, S. P., O'Donnell, K., Ploetz, R. C., Ortega-Arreola, R., Vázquez-Marrufo, G., Benítez-Malvido, J., Montero-Castro, J. C., Soto-Plancarte, A., & Rodríguez-Alvarado, G. (2018). A Novel Disease of Big-Leaf Mahogany Caused by Two Fusarium Species in Mexico. Plant Disease, 102(10), 1965–1972. https://doi.org/10.1094/PDIS-01-18-0060-RE

Silva, F. L. da., Oliveira Campos, A. de., Santos, D. A. dos., Oliveira Júnior, S. D. de., Araújo Padilha, C. E. de., Sousa Junior, F. C. de., Macedo, G. R. de., & Santos, E. S. dos. (2018). Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichorderma reesei CCT-2768 by solid state fermentation. Renewable Energy, 116, 299-308. https://doi.org/10.1016/j.renene.2017.09.064

Schweinberger, C. M., Putti, T. R., Susin, G. B., Trierweiler, J. O., & Trierweiler, L. F. (2016). Ethanol production from sweet potato: The effect of ripening, comparison of two heating methods, and cost analysis. The Canadian Journal of Chemical Engineering, 94(4), 716-724. https://doi.org/10.1002/cjce.22441

Schweinberger, C.M. (2016). Inovação e Optimzação no Processo de Produção de Etanol a partir de Batata-Doce. [Doctoral thesis, Universidade Federal do Rio Grande do Sul]. https://www.lume.ufrgs.br/handle/10183/143930

Silva Santiago, S. R. S. da., Santiago, P. A. L., de Oliveira, M. R., Souza Rodrigues, R. de., Barbosa, A. N., Silva, G. F.da., ... & de Souza, A. Q. L. (2022). Evaluation of enzymatic production of hydrolases and oxyredutases by Fusarium pseudocircinatum and Corynespora torulosa isolated from caesarweed (Urena lobata L., 1753). Research, Society and Development, 11(2), e13211225325-e13211225325. https://doi.org/10.33448/rsd-v11i2.25325

Souza Filho, P. F. de., Ribeiro, V. T., Santos, E. S. dos., & de Macedo, G. R. (2016). Simultaneous saccharification and fermentation of cactus pear biomass—evaluation of using different pretreatments. Industrial Crops and Products, 89, 425-433. https://doi.org/10.1016/j.indcrop.2016.05.028

Zhang, P., Chen, C., Shen, Y., Ding, T., Ma, D., Hua, Z., Sun, D. (2013). Starch saccharification and fermentation of uncooked sweet potato roots for fuel ethanol production. Bioresource Technology, 128, 835–838. https://doi.org/10.1016/j.biortech.2012.10.166

Zhang, L., Zhao, H., Gan, M., Jin, Y., Gao, X., Chen, Q., Guan, J., Wang, Z. (2011). Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales. Bioresource. Technology, 102(6), 4573–4579. https://doi.org/10.1016/j.biortech.2010.12.115

Downloads

Published

25/07/2022

How to Cite

ROMÃO, T. C.; MENEZES FILHO, A. C. P. de .; TININIS, A. G.; OLIVEIRA, M. S.; FELIPPE, L. G.; CASTRO, C. F. de S. .; MORAIS, P. B. de. Fungal amylases applied to the sweet potato starch for bioethanol production. Research, Society and Development, [S. l.], v. 11, n. 10, p. e136111032583, 2022. DOI: 10.33448/rsd-v11i10.32583. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32583. Acesso em: 24 dec. 2024.

Issue

Section

Agrarian and Biological Sciences