Mapping of research related to unmanned surface vehicles (USV)




Scientometrics; Scientific Research; Artificial Intelligence; VOSviewer.


Autonomous vehicles have been used for over 60 years, with the advancement of technology and new approaches, unmanned surface vehicles known as USV (Unmanned Surface Vehichle) were developed. This study aimed to quantitatively map the scientific productions related to unmanned surface vehicles (USV), through scientometric analysis, highlighting articles and review articles in this area of ​​knowledge and demonstrating the number of publications until the year 2021. From collections of data in the Scopus and Web of Science databases, exclusion of duplicate documents and previous analyzes of titles and abstracts were carried out, generating a general study portfolio with 1,190 publications. The result of this mapping showed that the research is focused on technologies for the creation of unmanned surface vehicles (USV) with advanced control and automation resources, and that continue to be developed for the improvement of the equipment, it can also be seen that the production on the subject will continue to grow as it is a relatively new subject with great prospects for the development of new research, methods and applications. Finally, it is expected that this study will help in the mapping of research, especially on topics that are not yet widespread in science, to increase visibility and understanding of research innovations.


Balestrieri, E., Daponte, P., De Vito, L., & Lamonaca, F. (2021). Sensors and measurements for unmanned systems: An overview. Sensors, 21(4), 1518.

Bella, S., Belalem, G., Belbachir, A., & Benfriha, H. (2021). HMDCS-UV: A concept study of Hybrid Monitoring, Detection and Cleaning System for Unmanned Vehicles. Journal of Intelligent & Robotic Systems, 102(2), 1-35.

Board, N. S., & National Research Council. (2005). Autonomous vehicles in support of naval operations. National Academies Press.

Bramer, W. M., Giustini, D., de Jonge, G. B., Holland, L., & Bekhuis, T. (2016). De-duplication of database search results for systematic reviews in EndNote. Journal of the Medical Library Association: JMLA, 104(3), 240.

Caccia, M., Bibuli, M., Bono, R., Bruzzone, G., Bruzzone, G., & Spirandelli, E. (2007). Unmanned surface vehicle for coastal and protected waters applications: The Charlie project. Marine Technology Society Journal, 41(2), 62-71.

Díaz-Gutiérrez, C. E., Garduño-Gaffare, M. P., & Benítez-Read, J. S. (2011). Design of a Teleoperated Aquatic Vehicle for the Gauging of Water Bodies. Journal of applied research and technology, 9(3), 394-418.

Fan, Y. S., Sun, X. J., Wang, G. F., & Zhao, Y. (2016). On evolutionary genetic algorithm in path planning for a USV collision avoidance. ICIC Express Lett, 10(7), 1691-1696.

Fayaz, S., Parah, S. A., & Qureshi, G. J. (2022). Underwater object detection: architectures and algorithms–a comprehensive review. Multimedia Tools and Applications, 1-46.

Feng, X., Li, Y., & Xu, H. (2011). The next generation of unmanned marine vehicles dedicated to the 50 anniversary of the human world record diving 10912 m. Jiqiren(Robot), 33(1), 113-118.

Ferreira, Í. O., Neto, A. A., & Monteiro, C. S. (2017). O uso de embarcações não tripuladas em levantamentos batimétricos. Revista Brasileira de Cartografia, 68(10), 1885-1903.

Françolin, C. C., Rao, A. V., Duarte, C., & Martel, G. (2012). Optimal control of a surface vehicle to improve underwater vehicle network connectivity. Journal of Aerospace Computing, Information, and Communication, 9(1), 1-13.

Jesus, S. M., Coelho, E., Onofre, J., Picco, P., Soares, C., & Lopes, C. (2001, November). The INTIFANTE'00 sea trial: preliminary source localization and ocean tomography data analysis. In MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295) (Vol. 1, pp. 40-45). IEEE.

Kitts, C., Mahacek, P., Adamek, T., Rasal, K., Howard, V., Li, S., ... & Hulme, S. (2012). Field operation of a robotic small waterplane area twin hull boat for shallow‐water bathymetric characterization. Journal of field Robotics, 29(6), 924-938.

Lee, Y. I., & Kim, Y. G. (2004, August). A collision avoidance system for autonomous ship using fuzzy relational products and COLREGs. In International Conference on Intelligent Data Engineering and Automated Learning (pp. 247-252). Springer, Berlin, Heidelberg.

Liu, J., Li, H., Luo, J., Xie, S., & Sun, Y. (2021). Estimating Obstacle Maps for USVs Based on a Multistage Feature Aggregation and Semantic Feature Separation Network. Journal of Intelligent & Robotic Systems, 102(1), 1-15.

Liu, Y., He, Y., & NOGUCHI, N. (2018). Development of a collision avoidance system for agricultural airboat based on laser sensor. Journal of Zhejiang University (Agriculture and Life Sciences), 44(4), 431-439.

Liu, Y., Wang, J., Shi, Y., He, Z., Liu, F., Kong, W., & He, Y. (2022). Unmanned airboat technology and applications in environment and agriculture. Computers and Electronics in Agriculture, 197, 106920.

Long, Y., Su, Y., Shi, B., Zuo, Z., & Li, J. (2021). A multi-subpopulation bacterial foraging optimisation algorithm with deletion and immigration strategies for unmanned surface vehicle path planning. Intelligent Service Robotics, 14(2), 303-312.

Mahé, A., Richard, A., Aravecchia, S., Geist, M., & Pradalier, C. (2021). Evaluation of prioritized deep system identification on a path following task. Journal of Intelligent & Robotic Systems, 101(4), 1-19.

Manley, J. E. (2008). Unmanned surface vehicles, 15 years of development. In OCEANS 2008 (pp. 1-4). IEEE.

Mu, D. D., Wang, G. F., & Fan, Y. S. (2018). Tracking control of podded propulsion unmanned surface vehicle with unknown dynamics and disturbance under input saturation. International Journal of Control, Automation and Systems, 16(4), 1905-1915.

Paravisi, M., H. Santos, D., Jorge, V., Heck, G., Gonçalves, L. M., & Amory, A. (2019). Unmanned surface vehicle simulator with realistic environmental disturbances. Sensors, 19(5), 1068.

Parra, M. R., Coutinho, R. X., & Pessano, E. F. C. (2019). Um breve olhar sobre a cienciometria: origem, evolução, tendências e sua contribuição para o ensino de ciências. Revista Contexto & Educação, 34(107), 126-141.

Pascoal, A., Oliveira, P., Silvestre, C., Sebastião, L., Rufino, M., Barroso, V., ... & Dando, P. (2000, September). Robotic ocean vehicles for marine science applications: the european asimov project. In OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158) (Vol. 1, pp. 409-415). IEEE.

Pearson, D., An, E., Dhanak, M., von Ellenrieder, K., & Beaujean, P. (2014). High-level fuzzy logic guidance system for an unmanned surface vehicle (USV) tasked to perform autonomous launch and recovery (ALR) of an autonomous underwater vehicle (AUV) (pp. 1-15). IEEE.

Pizzani, L., da Silva, R. C., Bello, S. F., & Hayashi, M. C. P. I. (2012). A arte da pesquisa bibliográfica na busca do conhecimento. RDBCI: Revista Digital de Biblioteconomia e Ciência da Informação, 10(2), 53-66.

Qiu, B., Wang, G., Fan, Y., Mu, D., & Sun, X. (2019). Adaptive sliding mode trajectory tracking control for unmanned surface vehicle with modeling uncertainties and input saturation. Applied Sciences, 9(6), 1240.

Razera, J. C. C. (2016). Contribuições da cienciometria para a área brasileira de Educação em Ciências. Ciência & Educação (Bauru), 22, 557-560.

Santos, R. N. M. D., & Kobashi, N. Y. (2009). Bibliometria, cientometria, infometria: conceitos e aplicações.

Silva, I. S., Campopiano, F., Lopes, G. S., Uenojo, A. K., Silva, H. T., Pellini, E. L., ... & Barros, E. A. (2018). Development of a Trimaran ASV. IFAC-PapersOnLine, 51(29), 8-13.

Specht, M., Stateczny, A., Specht, C., Widźgowski, S., Lewicka, O., & Wiśniewska, M. (2021). Concept of an innovative autonomous unmanned system for bathymetric monitoring of shallow waterbodies (INNOBAT system). Energies, 14(17), 5370.

Spinak, E. (1998). Indicadores cienciométricos. Ciência da informação, 27.

Uchida, H. I. R. O. A. K. I., & Hunaki, T. (2019, August). Development of a remoto control type weeding machine with stirring chains for a paddy field. In 22nd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR.

Van Eck, N. J., & Waltman, L. (2013). VOSviewer manual. Leiden: Univeristeit Leiden, 1(1), 1-53.

Vélez-Nicolás, M., García-López, S., Barbero, L., Ruiz-Ortiz, V., & Sánchez-Bellón, Á. (2021). Applications of unmanned aerial systems (UASs) in hydrology: A review. Remote Sensing, 13(7), 1359.

Zhao, Y., Sun, X., Wang, G., & Fan, Y. (2020). Adaptive backstepping sliding mode tracking control for underactuated unmanned surface vehicle with disturbances and input saturation. IEEE Access, 9, 1304-1312.

Wang, L., Wu, Q., Liu, J., Li, S., & Negenborn, R. R. (2019). State-of-the-art research on motion control of maritime autonomous surface ships. Journal of Marine Science and Engineering, 7(12), 438.

Zhao, Y., Qi, X., Ma, Y., Li, Z., Malekian, R., & Sotelo, M. A. (2020). Path following optimization for an underactuated USV using smoothly-convergent deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 22(10), 6208-6220.

Zhuang, J., Luo, J., & Liu, Y. (2020). A Locking Sweeping Method Based Path Planning for Unmanned Surface Vehicles in Dynamic Maritime Environments. Journal of Marine Science and Engineering, 8(11), 887.



How to Cite

CANO, Éric V.; CANO, P. L. G.; ENCINA, C. C. C.; MIOTO, C. L.; RIBEIRO, A. A.; PARANHOS FILHO, A. C. Mapping of research related to unmanned surface vehicles (USV). Research, Society and Development, [S. l.], v. 11, n. 10, p. e305111032682, 2022. DOI: 10.33448/rsd-v11i10.32682. Disponível em: Acesso em: 27 nov. 2022.



Review Article