Mapeamento de pesquisas relacionadas aos veículos de superfície não tripulado (USV)

Autores

DOI:

https://doi.org/10.33448/rsd-v11i10.32682

Palavras-chave:

Cienciometria; Pesquisa Científica; Inteligência Artificial; VOSviewer.

Resumo

Os veículos autônomos são utilizados há mais de 60 anos, com o avanço da tecnologia e novos enfoques desenvolveram-se os veículos de superfície não tripulados conhecidos como USV (Unmanned Surface Vehichle). Este estudo objetivou mapear quantitativamente as produções científicas relacionadas aos veículos de superfície não tripulados (USV, através de análise cienciométrica, destacando artigos e artigos de revisão desta área de conhecimento e demonstrando a quantidade de publicações até o ano de 2021. A partir de coletas de dados nas bases Scopus e Web of Science, foram realizadas exclusão de documentos duplicados e análises prévias dos títulos e resumos, gerando um portfólio geral de estudo com 1.190 publicações. O resultado deste mapeamento demonstrou que as pesquisas são focadas em tecnologias para a criação de veículos de superfície não tripulados (USV) com recursos avançados de controle e automação, e que continuam sendo desenvolvidas para o aperfeiçoamento do equipamento, pode-se perceber também que a produção sobre o tema seguirá em crescimento por ser um assunto relativamente novo e com grandes perspectivas para o desenvolvimento de novas pesquisas, métodos e aplicações. Por fim, espera-se que este estudo auxilie no mapeamento de pesquisas, principalmente sobre temas ainda pouco difundidos na ciência, para aumentar a visibilidade e compreensão sobre as inovações em pesquisas.

Referências

Balestrieri, E., Daponte, P., De Vito, L., & Lamonaca, F. (2021). Sensors and measurements for unmanned systems: An overview. Sensors, 21(4), 1518.

Bella, S., Belalem, G., Belbachir, A., & Benfriha, H. (2021). HMDCS-UV: A concept study of Hybrid Monitoring, Detection and Cleaning System for Unmanned Vehicles. Journal of Intelligent & Robotic Systems, 102(2), 1-35.

Board, N. S., & National Research Council. (2005). Autonomous vehicles in support of naval operations. National Academies Press.

Bramer, W. M., Giustini, D., de Jonge, G. B., Holland, L., & Bekhuis, T. (2016). De-duplication of database search results for systematic reviews in EndNote. Journal of the Medical Library Association: JMLA, 104(3), 240.

Caccia, M., Bibuli, M., Bono, R., Bruzzone, G., Bruzzone, G., & Spirandelli, E. (2007). Unmanned surface vehicle for coastal and protected waters applications: The Charlie project. Marine Technology Society Journal, 41(2), 62-71.

Díaz-Gutiérrez, C. E., Garduño-Gaffare, M. P., & Benítez-Read, J. S. (2011). Design of a Teleoperated Aquatic Vehicle for the Gauging of Water Bodies. Journal of applied research and technology, 9(3), 394-418.

Fan, Y. S., Sun, X. J., Wang, G. F., & Zhao, Y. (2016). On evolutionary genetic algorithm in path planning for a USV collision avoidance. ICIC Express Lett, 10(7), 1691-1696.

Fayaz, S., Parah, S. A., & Qureshi, G. J. (2022). Underwater object detection: architectures and algorithms–a comprehensive review. Multimedia Tools and Applications, 1-46.

Feng, X., Li, Y., & Xu, H. (2011). The next generation of unmanned marine vehicles dedicated to the 50 anniversary of the human world record diving 10912 m. Jiqiren(Robot), 33(1), 113-118.

Ferreira, Í. O., Neto, A. A., & Monteiro, C. S. (2017). O uso de embarcações não tripuladas em levantamentos batimétricos. Revista Brasileira de Cartografia, 68(10), 1885-1903.

Françolin, C. C., Rao, A. V., Duarte, C., & Martel, G. (2012). Optimal control of a surface vehicle to improve underwater vehicle network connectivity. Journal of Aerospace Computing, Information, and Communication, 9(1), 1-13.

Jesus, S. M., Coelho, E., Onofre, J., Picco, P., Soares, C., & Lopes, C. (2001, November). The INTIFANTE'00 sea trial: preliminary source localization and ocean tomography data analysis. In MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295) (Vol. 1, pp. 40-45). IEEE.

Kitts, C., Mahacek, P., Adamek, T., Rasal, K., Howard, V., Li, S., ... & Hulme, S. (2012). Field operation of a robotic small waterplane area twin hull boat for shallow‐water bathymetric characterization. Journal of field Robotics, 29(6), 924-938.

Lee, Y. I., & Kim, Y. G. (2004, August). A collision avoidance system for autonomous ship using fuzzy relational products and COLREGs. In International Conference on Intelligent Data Engineering and Automated Learning (pp. 247-252). Springer, Berlin, Heidelberg.

Liu, J., Li, H., Luo, J., Xie, S., & Sun, Y. (2021). Estimating Obstacle Maps for USVs Based on a Multistage Feature Aggregation and Semantic Feature Separation Network. Journal of Intelligent & Robotic Systems, 102(1), 1-15.

Liu, Y., He, Y., & NOGUCHI, N. (2018). Development of a collision avoidance system for agricultural airboat based on laser sensor. Journal of Zhejiang University (Agriculture and Life Sciences), 44(4), 431-439.

Liu, Y., Wang, J., Shi, Y., He, Z., Liu, F., Kong, W., & He, Y. (2022). Unmanned airboat technology and applications in environment and agriculture. Computers and Electronics in Agriculture, 197, 106920.

Long, Y., Su, Y., Shi, B., Zuo, Z., & Li, J. (2021). A multi-subpopulation bacterial foraging optimisation algorithm with deletion and immigration strategies for unmanned surface vehicle path planning. Intelligent Service Robotics, 14(2), 303-312.

Mahé, A., Richard, A., Aravecchia, S., Geist, M., & Pradalier, C. (2021). Evaluation of prioritized deep system identification on a path following task. Journal of Intelligent & Robotic Systems, 101(4), 1-19.

Manley, J. E. (2008). Unmanned surface vehicles, 15 years of development. In OCEANS 2008 (pp. 1-4). IEEE.

Mu, D. D., Wang, G. F., & Fan, Y. S. (2018). Tracking control of podded propulsion unmanned surface vehicle with unknown dynamics and disturbance under input saturation. International Journal of Control, Automation and Systems, 16(4), 1905-1915.

Paravisi, M., H. Santos, D., Jorge, V., Heck, G., Gonçalves, L. M., & Amory, A. (2019). Unmanned surface vehicle simulator with realistic environmental disturbances. Sensors, 19(5), 1068.

Parra, M. R., Coutinho, R. X., & Pessano, E. F. C. (2019). Um breve olhar sobre a cienciometria: origem, evolução, tendências e sua contribuição para o ensino de ciências. Revista Contexto & Educação, 34(107), 126-141.

Pascoal, A., Oliveira, P., Silvestre, C., Sebastião, L., Rufino, M., Barroso, V., ... & Dando, P. (2000, September). Robotic ocean vehicles for marine science applications: the european asimov project. In OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158) (Vol. 1, pp. 409-415). IEEE.

Pearson, D., An, E., Dhanak, M., von Ellenrieder, K., & Beaujean, P. (2014). High-level fuzzy logic guidance system for an unmanned surface vehicle (USV) tasked to perform autonomous launch and recovery (ALR) of an autonomous underwater vehicle (AUV) (pp. 1-15). IEEE.

Pizzani, L., da Silva, R. C., Bello, S. F., & Hayashi, M. C. P. I. (2012). A arte da pesquisa bibliográfica na busca do conhecimento. RDBCI: Revista Digital de Biblioteconomia e Ciência da Informação, 10(2), 53-66.

Qiu, B., Wang, G., Fan, Y., Mu, D., & Sun, X. (2019). Adaptive sliding mode trajectory tracking control for unmanned surface vehicle with modeling uncertainties and input saturation. Applied Sciences, 9(6), 1240.

Razera, J. C. C. (2016). Contribuições da cienciometria para a área brasileira de Educação em Ciências. Ciência & Educação (Bauru), 22, 557-560.

Santos, R. N. M. D., & Kobashi, N. Y. (2009). Bibliometria, cientometria, infometria: conceitos e aplicações.

Silva, I. S., Campopiano, F., Lopes, G. S., Uenojo, A. K., Silva, H. T., Pellini, E. L., ... & Barros, E. A. (2018). Development of a Trimaran ASV. IFAC-PapersOnLine, 51(29), 8-13.

Specht, M., Stateczny, A., Specht, C., Widźgowski, S., Lewicka, O., & Wiśniewska, M. (2021). Concept of an innovative autonomous unmanned system for bathymetric monitoring of shallow waterbodies (INNOBAT system). Energies, 14(17), 5370.

Spinak, E. (1998). Indicadores cienciométricos. Ciência da informação, 27.

Uchida, H. I. R. O. A. K. I., & Hunaki, T. (2019, August). Development of a remoto control type weeding machine with stirring chains for a paddy field. In 22nd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR.

Van Eck, N. J., & Waltman, L. (2013). VOSviewer manual. Leiden: Univeristeit Leiden, 1(1), 1-53.

Vélez-Nicolás, M., García-López, S., Barbero, L., Ruiz-Ortiz, V., & Sánchez-Bellón, Á. (2021). Applications of unmanned aerial systems (UASs) in hydrology: A review. Remote Sensing, 13(7), 1359.

Zhao, Y., Sun, X., Wang, G., & Fan, Y. (2020). Adaptive backstepping sliding mode tracking control for underactuated unmanned surface vehicle with disturbances and input saturation. IEEE Access, 9, 1304-1312.

Wang, L., Wu, Q., Liu, J., Li, S., & Negenborn, R. R. (2019). State-of-the-art research on motion control of maritime autonomous surface ships. Journal of Marine Science and Engineering, 7(12), 438.

Zhao, Y., Qi, X., Ma, Y., Li, Z., Malekian, R., & Sotelo, M. A. (2020). Path following optimization for an underactuated USV using smoothly-convergent deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 22(10), 6208-6220.

Zhuang, J., Luo, J., & Liu, Y. (2020). A Locking Sweeping Method Based Path Planning for Unmanned Surface Vehicles in Dynamic Maritime Environments. Journal of Marine Science and Engineering, 8(11), 887.

Downloads

Publicado

01/08/2022

Como Citar

CANO, Éric V.; CANO, P. L. G.; ENCINA, C. C. C.; MIOTO, C. L.; RIBEIRO, A. A.; PARANHOS FILHO, A. C. Mapeamento de pesquisas relacionadas aos veículos de superfície não tripulado (USV). Research, Society and Development, [S. l.], v. 11, n. 10, p. e305111032682, 2022. DOI: 10.33448/rsd-v11i10.32682. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32682. Acesso em: 17 jul. 2024.

Edição

Seção

Artigos de Revisão