Eco-friendly production of thermostable, halotolerant and pH wide range biosurfactant by Issatchenkia orientalis UCP 1603

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.32851

Keywords:

Issatchenkia orientalis; Microbial surfactant; Renewable substrates; Higher stale tensoactive.

Abstract

Microbial surfactants are amphiphilic molecules with attractive industrial prospects due to their advantages over commonly commercialized chemical surfactants, such as low toxicity, high biocompatibility and biodegradability, and efficiency at extreme conditions. However, the large-scale production of biosurfactants still becomes uncompetitive due to the low yields and onerous costs, being considered the use of renewable substrates as a viable strategy. In this sense, the present study aimed to investigate the sustainable production of biosurfactant by the yeast Issatchenkia orientalis UCP 1603 in 2 L of salt-based medium supplemented with 7.5% cassava wastewater, 5% corn steep liquor and 1% post-frying soybean oil. Fermentation was carried out in 2.8 L-Fernbach flasks for 72 h, at 28°C and 150 rpm, and reduction in surface tension to 30.1 mN/m was verified. The highest yield of the biosurfactant produced (4.02 g/L) was observed after extraction with 70% ethanol (2:1, v/v) and the isolated biosurfactant reduced the surface tension of the medium to 28.7 mN/m, the interfacial tension against n-hexadecane to 16.6 mN/m and has a CMC of 800 mg/L. The biocompound showed anionic and polymeric nature and did not present toxicity against cabbage (Brassica oleracea var. capitata) seeds. The stability in the range of pH 4-10, salinity 5-25% and temperature 5-100°C, evidenced a highly stable biosurfactant, with promising potential of application in several industrial activities or environmental processes in adverse conditions.

Author Biographies

Tainã Crisia de Souza Fonseca , Federal Rural University of Pernambuco

Doctorate - RENORBIO

Dayana Montero Rodriguez, Catholic University of Pernambuco

Catholic University of Pernambuco NPCIMB

Rafael de Souza Mendonça, Catholic University of Pernambuco

NPCIAMB-UNICAP

Isabela Natália da Silva Ferreira, Federal Rural University of Pernambuco

Doctorate RENORBIO

Luiz Oliveira Costa, Catholic University of Pernambuco

NPCIAMB-UNICAP

References

Araújo, H. W., Andrade, R. F., Montero-Rodríguez, D., Rubio-Ribeaux, D., Alves da Silva, C. A., & Campos-Takaki, G. M. (2019). Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microbial Cell Factories, 18(1), 1-13.

Batista, R. M., Rufino, R. D., Luna, J. M., de Souza, J. E. G., & Sarubbo, L. A. (2010). Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil. Water Environment Research, 82(5), 418-425.

Campos, J. M., Stamford, T. L. M., & Sarubbo, L. A. (2019). Characterization and application of a biosurfactant isolated from Candida utilis in salad dressings. Biodegradation, 30(4), 313-324.

Cardoso, S., Dantas, R., Costa, C., Campos, E., & Tambourgi, E. (2020). Evaluation of the medium fermentative parameters for the production of biosurfactant using the Candida gloebosa. Chemical Engineering Transactions, 79, 475-480.

Csutak, O., Stoica, I., & Vassu, T. (2012). Evaluation of production, stability and activity of biosurfactants from yeasts with application in bioremediation of oil-polluted environment. Rev Chim, 63(10), 973-7.

Douglass, A. P., Offei, B., Braun-Galleani, S., Coughlan, A. Y., Martos, A. A., Ortiz-Merino, R. A., & Wolfe, K. H. (2018). Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: one species, four names. PLoS pathogens, 14(7), e1007138. https://doi.org/10.1371/journal.ppat.1007138

Durval, I., Rufino, R., & Sarubbo, L. (2021). Biosurfactant as an Environmental Remediation Agent: Toxicity, Formulation, and Application in the Removal of Petroderivate in Sand and Rock Walls. Biointerface Res. Appl. Chem, 12, 34-48.

Fai, A. E. C., Simiqueli, A. P. R., de Andrade, C. J., Ghiselli, G., & Pastore, G. M. (2015). Optimized production of biosurfactant from Pseudozyma tsukubaensis using cassava wastewater and consecutive production of galactooligosaccharides: an integrated process. Biocatalysis and Agricultural Biotechnology, 4(4), 535-542.

Ferreira, I. N. S., Rodríguez, D. M., Campos-Takaki, G. M., & da Silva Andrade, R. F. (2020). Biosurfactant and bioemulsifier as promising molecules produced by Mucor hiemalis isolated from Caatinga soil. Electronic Journal of Biotechnology, 47, 51-58.

Fonseca, T. C. de S., Souza, A. F., Santos, P. N., Silva, P. H., Rodriguez, D. M., Costa, L. O., & Campos-Takaki, G. M. Sustainable production of biosurfactant by Issatchenkia orientalis UCP 1603 using renewable substrates. Research, Society and Development, 11(4), e16111427174, 2022. https://doi.org/10.33448/rsd-v11i4.27174

Freitas, E. L., et al. Avaliação do fungo Penicillium sclerotiorum UCP 1040 na produção de biossurfactante utilizando óleo pós-fritura e milhocina. Research, Society and Development, 11(5), e0411527502-e0411527502, 2022.

Gaur, V. K., Sharma, P., Sirohi, R., Varjani, S., Taherzadeh, M. J., Chang, J. S., & Kim, S. H. (2022). Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource technology, 343, 126059.

Haddad, N. I., Wang, J., & Mu, B. (2009). Identification of a biosurfactant producing strain: Bacillus subtilis HOB2. Protein and Peptide letters, 16(1), 7-13.

Jain, R. M., Mody, K., Mishra, A., & Jha, B. (2012). Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater. Carbohydrate Polymers, 87(3), 2320-2326.

Kashif, A., Rehman, R., Fuwad, A., Shahid, M. K., Dayarathne, H. N. P., Jamal, A., Aftab, M. N., Mainali, B., & Choi, Y. Current advances in the classification, production, properties and applications of microbial biosurfactants – A critical review. Advances in Colloid and Interface Science, 306(1), 102718, 2022. https://doi.org/10.1016/j.cis.2022.102718

Katemai, W., Maneerat, S., Kawai, F., Kanzaki, H., & Nitoda, T. (2008). Purification and characterization of a biosurfactant produced by Issatchenkia orientalis SR4. The Journal of General and Applied Microbiology, 54(1), 79-82. https://doi.org/10.2323/jgam.54.79

Kusuma, S. H., Meitha, K., & Suhandono, S. (2021). Characterization of di-rhamnolipid biosurfactant in recombinant Escherichia coli. In Key Engineering Materials (Vol. 874, pp. 107-114). Trans Tech Publications Ltd.

Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. A. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiolology Methods, 46,109-120. https://doi:10.1016/s0167-7012(01)00259-7

Liang, T. W., Wu, C. C., Cheng, W. T., Chen, Y. C., Wang, C. L., Wang, I. L., & Wang, S. L. (2014). Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Applied biochemistry and biotechnology, 172(2), 933-950.

Lima, R. A., Andrade, R. F., Rodríguez, D. M., Araújo, H. W., Santos, V. P., & Campos-Takaki, G. M. (2017). Production and characterization of biosurfactant isolated from Candida glabrata using renewable substrates. African Journal of Microbiology Research, 11(6), 237-244.

Lira, I. C. A. S., da Silva Santos, E. M., Guerra, J. M. C., Meira, H. M., Sarubbo, L. A., & de Luna, J. M. (2022). Microbial Biosurfactant: Production, Characterization and Application as a Food Emulsions. Research, Society and Development, 11(5), e44111528339-e44111528339.

Lira, I. R. A. S., Santos, E. M. D. S., Filho, A. A. S., Farias, C. B. B., Guerra, J. M. C., Sarubbo, L. A., & de Luna, J. M. (2020). Biosurfactant production from Candida guilliermondii and evaluation of its toxicity. Chemical Engineering, 79.

Luna, J. M., Rufino, R. D., Jara, A. M. A., Brasileiro, P. P., & Sarubbo, L. A. (2015). Environmental applications of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480, 413-418.

Luna, J. M., Rufino, R. D., Sarubbo, L. A., & Campos-Takaki, G. M. (2013). Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids and surfaces B: Biointerfaces, 102, 202-209.

Mendonça, R. S., Sá, A. V. P., Rosendo, L. A., dos Santos, R. A., do Amaral Marques, N. S. A., Souza, A. F., & de Campos Takaki, G. M. (2021). Produção de biossurfactante e lipídeos por uma nova cepa de Absidia cylindrospora UCP 1301 isolada do solo da Caatinga usando subprodutos agroindustriais de baixo custo. Brazilian Journal of Development, 7(1), 8300-8313.

Mohanty, S. S., Koul, Y., Varjani, S., Pandey, A., Ngo, H. H., Chang, J. S., & Bui, X. T. (2021). A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microbial cell factories, 20(1), 1-13.

Montero-Rodríguez, D., de Souza Mendonça, R., de Souza, A. F., da Silva Ferreira, I. N., Andrade, R. F. S., & Campos-Takaki, G. M. (2022). Solid-state fermentation for low-cost production of biosurfactant by promising Mucor hiemalis UCP 1309. Research, Society and Development, 11(6), e25211628817-e25211628817.

Pinto, M. I. S., Campos Guerra, J. M., Meira, H. M., Sarubbo, L. A., & de Luna, J. M. (2022). A Biosurfactant from Candida bombicola: Its Synthesis, Characterization, and its Application as a Food Emulsions. Foods, 11(4), 561.

Pinto, M. I., Ribeiro, B., Guerra, J. M. C., Rufino, R., Sarubbo, L., & Luna, J. (2018). Production in bioreactor, toxicity and stability of a low-cost biosurfactant. Chemical Engineering Transactions, 64, 595-600.

Rahman, P. K., Mayat, A., Harvey, J. G. H., Randhawa, K. S., Relph, L. E., & Armstrong, M. C. (2019). Biosurfactants and bioemulsifiers from marine algae. In The Role of Microalgae in Wastewater Treatment (pp. 169-188). Springer, Singapore.

Ribeiro, B. G., dos Santosb, M. M., da Silvac, I. A., Meirad, H. M., de Oliveirad, A. M., Guerrab, J. M., & Sarubbod, L. A. (2020). Study of the biosurfactant production by Saccharomyces cerevisiae URM 6670 using agroindustrial waste. Chem Eng.

Rocha e Silva, F. C. P., Rocha e Silva, N. M. P., Luna, J. M., Rufino, R. D., Santos, V. A., & Sarubbo, L. A. (2018). Dissolved air flotation combined to biosurfactants: A clean and efficient alternative to treat industrial oily water. Reviews in Environmental Science and Bio/Technology, 17(4), 591-602.

Rubio-Ribeaux, D., De Oliveira, C. V. J., Marinho, J. D. S., Lins, U. D. B. L., Do Nascimento, I. D. F., Barreto, G. C., & Campos-Takaki, G. (2020). Innovative production of biosurfactant by Candida tropicalis UCP 1613 through solid-state fermentation. Chemical Engineering Transactions, 79, 361-366.

Rubio-Ribeaux, D., Andrade, R. F. S., Silva, G. S., Rodrigo, A. D. H., Milagre, A. P., Nunes, P., & Campos-Takaki, G. M. (2017). Promising biosurfactant produced by a new Candida tropicalis UCP 1613 strain using substrates from renewable resources. African Journal of Microbiology Research, 11(23), 981-991.

Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International journal of molecular sciences, 17(3), 401.

Sarubbo, L. A., Farias, C. B., & Campos-Takaki, G. M. (2007). Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Current Microbiology, 54(1), 68-73.

Sarubbo, L. A., Maria da Gloria, C. S., Durval, I. J. B., Bezerra, K. G. O., Ribeiro, B. G., Silva, I. A., & Banat, I. M. (2022). Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochemical Engineering Journal, 108377.

Singh, A. K., & Sharma, P. (2020). Disinfectant-like activity of lipopeptide biosurfactant produced by Bacillus tequilensis strain SDS21. Colloids and Surfaces B: Biointerfaces, 185, 110514.

Tiquia, S. M., Tam, N. F. Y., & Hodgkiss, I. J. (1996). Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environmental pollution, 93(3), 249-256.

Zwirzitz, A., Alteio, L., Sulzenbacher, D., Atanasoff, M., & Selg, M. (2021). Ethanol production from wheat straw hydrolysate by Issatchenkia orientalis isolated from waste cooking oil. Journal of Fungi, 7(2), 121. https://doi.org/10.3390/jof7020121

Downloads

Published

04/08/2022

How to Cite

FONSECA , T. C. de S. .; RODRIGUEZ, D. M.; MENDONÇA, R. de S. .; FERREIRA, I. N. da S. .; COSTA, L. O. .; CAMPOS-TAKAKI, G. M. Eco-friendly production of thermostable, halotolerant and pH wide range biosurfactant by Issatchenkia orientalis UCP 1603. Research, Society and Development, [S. l.], v. 11, n. 10, p. e364111032851, 2022. DOI: 10.33448/rsd-v11i10.32851. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32851. Acesso em: 3 oct. 2022.

Issue

Section

Engineerings