Production and functional stability of the biourfactant isolated from Stenotrophomonas maltophilia UCP 1601




Tensoactive; Bacteria; Agro-industrial wastes; Higher stability; Circular bioeconomy.


The present study investigated the production of biosurfactant by Stenotrophomonas maltophilia UCP 1601under submerse fermentation using renewable substrates as carbon and nitrogen sources applying two statistical tools as Plakket-Burman experimental design and full factorial design to optimize the bioprocess. A partial characterization was performed by measuring the surface tension, emulsification index, determination of CMC, ionic charge. The biosurfactant was tested to different conditions of temperature, pH and salinity, in order to evaluate the stability of the biomolecule. The surface tension of the biosurfactant produced using corn steep liquor and glycerol was 27 mN/m, whose yield was 12.6 g/L, and its character is anionic. The critical micelle concentration (CMC) was 70% using the cell-free metabolic liquid. The biosurfactant was able to emulsify 56% of the burned engine oil. The biomolecule showed high functional stability and performance under extreme conditions of thermal, pH and saline concentrations stability. All determinations carried out confirm the generation of a stable, efficient bioproduct that contributes to the circular bioeconomy and the great potential for remediation under harsh environmental conditions.

Author Biographies

Isabela Natália da Silva Ferreira, Federal Rural University of Pernambuco


Paulo Henrique da Silva , Federal Rural University of Pernambuco




Rafael de Souza Mendonça, Catholic University of Pernambuco


Rosileide Fontenele da Silva Andrade, Catholic University of Pernambuco



Aboelkhair, H., Diaz, P., & Attia, A. (2022). Biosurfactant production using Egyptian oil fields indigenous bacteria for microbial enhanced oil recovery. Journal of Petroleum Science and Engineering, 208, 109601.

Alizadeh-Sani, M., Hamishehkar, H., Khezerlou, A., Azizi-Lalabadi, M., Azadi, Y., Nattagh-Eshtivani, E., & Ehsani, A. (2018). Bioemulsifiers derived from microorganisms: Applications in the drug and food industry. Advanced pharmaceutical bulletin, 8(2), 191.

Andrade, R. F., Antunes, A. A., Lima, R. A., Araújo, H. W., Resende-Stoianoff, M. A., Franco, L. O., & Campos-Takaki, G. M. (2015). Enhanced production of an glycolipid biosurfactant produced by Candida glabrata UCP/WFCC1556 for application in dispersion and removal of petroderivatives. Int. J. Curr. Microbiol. Appl. Sci, 4(7), 563-576.

Bertrand, J. C., Bonin, P., Caumette, P., Gattuso, J. P., Grégori, G., Guyoneaud, R., & Poly, F. (2015). Biogeochemical cycles. In Environmental microbiology: fundamentals and applications (pp. 511-617). Springer, Dordrecht.

Câmara, J. M. D., Sousa, M. A. S., & Barros Neto, E. L. (2019). Optimization and characterization of biosurfactant rhamnolipid production by Pseudomonas aeruginosa isolated from an artificially contaminated soil. Journal of Surfactants and Detergents, 22(4), 711-719.

Carrillo, P. G., Mardaraz, C., Pitta-Alvarez, S. I., & Giulietti, A. M. (1996). Isolation and selection of biosurfactant-producing bacteria. World Journal of Microbiology and Biotechnology, 12(1), 82-84.

Cruz-Hernández, M. A., Mendoza-Herrera, A., Bocanegra-García, V., & Rivera, G. (2022). Azospirillum spp. from Plant Growth-Promoting Bacteria to Their Use in Bioremediation. Microorganisms, 10(5), 1057.

Ferreira, I. N. S., Rodríguez, D. M., Campos-Takaki, G. M., & da Silva Andrade, R. F. (2020). Biosurfactant and bioemulsifier as promising molecules produced by Mucor hiemalis isolated from Caatinga soil. Electronic Journal of Biotechnology, 47, 51-58.

Ganesan, N. G., Miastkowska, M. A., Pulit-Prociak, J., Dey, P., & Rangarajan, V. (2022). Formulation of a stable biocosmetic nanoemulsion using a Bacillus lipopeptide as the green-emulsifier for skin-care applications. Journal of Dispersion Science and Technology, 1-13.

Gaur, V. K., Sharma, P., Sirohi, R., Varjani, S., Taherzadeh, M. J., Chang, J. S., & Kim, S. H. (2022). Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource technology, 343, 126059.

Goyal, S., & Singh, J. (2022). Biphasic Liquid-Liquid Extraction of Biosurfactant from Lactobacillus delbrueckii. Brazilian Archives of Biology and Technology, 65.

Guo, P., Xu, W., Tang, S., Cao, B., Wei, D., Zhang, M., & Li, W. (2022). Isolation and characterization of a biosurfactant producing strain Planococcus sp. XW-1 from the cold marine environment. International journal of environmental research and public health, 19(2), 782.

Hemlata, B., Selvin, J., & Tukaram, K. (2015). Optimization of iron chelating biosurfactant production by Stenotrophomonas maltophilia NBS-11. Biocatalysis and agricultural biotechnology, 4(2), 135-143.

Hentati, D., Chebbi, A., Hadrich, F., Frikha, I., Rabanal, F., Sayadi, S., & Chamkha, M. (2019). Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicology and environmental safety, 167, 441-449.

Jaysree, R. C., Basu, S., Singh, P. P., Ghosal, T., Patra, P. A., Keerthi, Y., & Rajendran, N. (2011). Isolation of biosurfactant producing bacteria from environmental samples. Pharmacologyonline, 3, 1427-1433.

Jumpathong, W., Intra, B., Euanorasetr, J., & Wanapaisan, P. (2022). Biosurfactant-Producing Bacillus velezensis PW192 as an Anti-Fungal Biocontrol Agent against Colletotrichum gloeosporioides and Colletotrichum musae. Microorganisms, 10(5), 1017.

Khanna, S., & Pattnaik, P. (2019). Production and functional characterization of food compatible biosurfactants. Appl. Food Sci. J, 3, 1-4.

Kumar, A., Singh, S. K., Kant, C., Verma, H., Kumar, D., Singh, P. P., & Kumar, M. (2021). Microbial biosurfactant: a new frontier for sustainable agriculture and pharmaceutical industries. Antioxidants, 10(9), 1472.

Lima, R. A., Andrade, R. F., RodrÃguez, D. M., Araújo, H. W., Santos, V. P., & Campos-Takaki, G. M. (2017). Production and characterization of biosurfactant isolated from Candida glabrata using renewable substrates. African journal of microbiology research, 11(6), 237-244.

Lamilla, C., Schalchli, H., Briceño, G., Leiva, B., Donoso-Piñol, P., Barrientos, L., & Diez, M. C. (2021). A pesticide biopurification system: a source of biosurfactant-producing bacteria with environmental biotechnology applications. Agronomy, 11(4), 624.

Mouafo, H. T., Sokamte, A. T., Mbawala, A., Ndjouenkeu, R., & Devappa, S. (2022). Biosurfactants from lactic acid bacteria: A critical review on production, extraction, structural characterization and food application. Food Bioscience, 101598.

Nogueira, I. B., Rodríguez, D. M., da Silva Andradade, R. F., Lins, A. B., Bione, A. P., da Silva, I. G. S., & de Campos-Takaki, G. M. (2020). Bioconversion of agroindustrial waste in the production of bioemulsifier by Stenotrophomonas maltophilia UCP 1601 and application in bioremediation process. International Journal of Chemical Engineering, 2020.

Parthipan, P., Cheng, L., Dhandapani, P., Elumalai, P., Huang, M., & Rajasekar, A. (2022). Impact of biosurfactant and iron nanoparticles on biodegradation of polyaromatic hydrocarbons (PAHs). Environmental Pollution, 306, 119384.

Purwasena, I. A., Astuti, D. I., Syukron, M., Amaniyah, M., & Sugai, Y. (2019). Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR. Journal of Petroleum Science and Engineering, 183, 106383.

Putra, W., & Hakiki, F. (2019). Microbial enhanced oil recovery: interfacial tension and biosurfactant-bacteria growth. Journal of Petroleum Exploration and Production Technology, 9(3), 2353-2374.

Santos, E. F., Teixeira, M. F. S., Converti, A., Porto, A. L. F., & Sarubbo, L. A. (2019). Production of a new lipoprotein biosurfactant by Streptomyces sp. DPUA1566 isolated from lichens collected in the Brazilian Amazon using agroindustry wastes. Biocatalysis and Agricultural Biotechnology, 17, 142-150.

Semai, A., Plewniak, F., Lledo, J., Annonay, G., Vandecasteele, C., Lopez-Roques, C., & Bertin, P. N. (2022). Complete Genome Sequence of Stenotrophomonas maltophilia 1800, a New Bacterial Strain with Potential for Bioremediation of Oil-Contaminated Environments. Microbiology Resource Announcements, 11(2), e01116-21.

Silva, N. R. A., Luna, M. A., Santiago, A. L., Franco, L. O., Silva, G. K., De Souza, P. M., & Campos-Takaki, G. M. (2014). Biosurfactant-and-bioemulsifier produced by a promising Cunninghamella echinulata isolated from caatinga soil in the northeast of Brazil. International journal of molecular sciences, 15(9), 15377-15395.

Shi, S., Teng, Z., Liu, J., & Li, T. (2022). Conversion of Waste Cooking Oil to Rhamnolipid by a Newly Oleophylic Pseudomonas aeruginosa WO2. International Journal of Environmental Research and Public Health, 19(3), 1700.

Singh, S. K., Singh, M. K., Verma, H., Singh, P. P., Singh, A. V., Rashmi, K., & Kumar, A. (2021). Biosurfactant producing microbes for clean-up of soil contaminants. In Microbe Mediated Remediation of Environmental Contaminants (pp. 89-93). Woodhead Publishing.

Singh, S. K., & Sachan, A. (2022). A review on biotransformation of polyaromatic hydrocarbons mediated by biosurfactant producing bacteria. Petroleum Science and Technology, 1-21.

Uyar, E., & Sağlam, Ö. (2021). Isolation, screening and molecular characterization of biosurfactant producing bacteria from soil samples of auto repair shops. Archives of Microbiology, 203(8), 4929-4939.

Uzoigwe, C., Burgess, J. G., Ennis, C. J., & Rahman, P. K. (2015). Bioemulsifiers are not biosurfactants and require different screening approaches. Frontiers in microbiology, 6, 245.

Varjani, S. J., & Upasani, V. N. (2017). Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource technology, 232, 389-397.

Ventriglio, A., Bellomo, A., di Gioia, I., Di Sabatino, D., Favale, D., De Berardis, D., & Cianconi, P. (2021). Environmental pollution and mental health: a narrative review of literature. CNS spectrums, 26(1), 51-61.

Vieira, I. M. M., Santos, B. L. P., Ruzene, D. S., & Silva, D. P. (2021). An overview of current research and developments in biosurfactants. Journal of Industrial and Engineering Chemistry, 100, 1-18.

Wu, B., Xiu, J., Yu, L., Huang, L., Yi, L., & Ma, Y. (2022). Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs. Scientific Reports, 12(1), 1-10.

Zargar, A. N., Lymperatou, A., Skiadas, I., Kumar, M., & Srivastava, P. (2022). Structural and functional characterization of a novel biosurfactant from Bacillus sp. IITD106. Journal of Hazardous Materials, 423, 127201.




How to Cite

FERREIRA, I. N. da S. .; SILVA , P. H. da .; MENDONÇA, R. de S. .; ANDRADE, R. F. da S. .; CAMPOS-TAKAKI, G. M. de. Production and functional stability of the biourfactant isolated from Stenotrophomonas maltophilia UCP 1601. Research, Society and Development, [S. l.], v. 11, n. 11, p. e87111132995, 2022. DOI: 10.33448/rsd-v11i11.32995. Disponível em: Acesso em: 6 oct. 2022.