Eco-friendly production of biosurfactant by Mucor circinelloides UCP 0018 using agro-industrial substrates

Authors

DOI:

https://doi.org/10.33448/rsd-v11i11.33025

Keywords:

Microbial surfactant; Mucorales fungus; Waste bioconversion; Emulsifying properties.

Abstract

Green bioconversion of low-cost agro-industrial substrates into high-value-added products becomes a biotechnological strategy to enable the production on an industrial scale. In this context, two agro-industrial by-products were used in this study in order to formulate an economic and sustainable media for biosurfactant (BS) production by Mucor circinelloides UCP 0018. For this, a 22 full-factorial design was used to investigate the influence of concentrations of corn steep liquor (CSL) and crude glycerol (CG) on surface tension as response variable. The results showed the ability of this Mucoralean fungus to produce BS under all design conditions, highlighting condition 4 (9% of both substrates) due to the greater reduction in surface tension (from 72 to 29.7 mN/m). Statistical analysis confirmed significant influence of both by-products on surface tension. This BS exhibited excellent emulsifying properties (EI24 98.9%), as well as ODA of 28.26 cm², with burnt motor oil. Preliminary characterization showed the polymeric nature of the biomolecule, with a content of 55.7% of carbohydrates, 28.2% of lipids and 16.1% of proteins, as well as its anionic character and critical micellar dilution (CMD) at 50%. The stability in the range of pH 2-6, temperature 20-80°C and salinity 5-25% evidenced a stable BS, with promising potential of application in several industrial activities or environmental processes in adverse conditions.

Author Biographies

Ana Paula Bione, Federal Rural University of Pernambuco

DOCTORATE- RENORBIO

Amanda Barbosa Lins, Federal Rural University of Pernambuco

DOCTORATE RENORBIO

Camila Freire de Melo, Federal Rural University of Pernambuco

DOCTORATE RENORBIO

Rafael de Souza Mendonça, Catholic University of Pernambuco

NPCIAMB-UNICAP

Dayana Montero Rodríguez, Catholic University of Pernambuco

NPCIAMB-UNICAP

References

Andrade, R. F. S., Silva, T. A. L., Lima, R. A., Santos, E. R., França, E. S., Silva, K. J. C., & Campos-Takaki, G. M. (2018). Simultaneous production of surface active agent and lipids by Rhodotorula glutinis UCP/WFCC 1556. Exploring Microorganisms: Recent Advances in Applied Microbiology, 144.

Andrade, R. F., Silva, T. A., Ribeaux, D. R., Rodriguez, D. M., Souza, A. F., Lima, M. A., & Campos-Takaki, G. M. (2018). Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 using renewable resources and its application in cotton fabric cleaning process. Advances in Materials Science and Engineering, 2018.

Bione, A. P., Lins, A. B., Rodríguez, D. M., de Souza, A. F., de Souza Mendonça, R., de Lima Filho, H. J., & Campos-Takaki, G. M. (2022). Valorization of agro-industrial by-products for sustainable production of biosurfactant by Syncephalastrum racemosum UCP 1302. Research, Society and Development, 11(9), e58011932372-e58011932372.

Bione, A. M., Lins, A. B., Silva, T. C., & Montero-Rodríguez, D. (2016). Production of biosurfactant by Cunninghamella phaeospora in submerged fermentation using water soluble substrates. Microbes in the Spotlight: Recent Progress in the Understanding of Beneficial and Harmful Microorganisms, 361.

Cai, Q., Zhu, Z., Chen, B., Lee, K., Nedwed, T. J., Greer, C., & Zhang, B. (2021). A cross-comparison of biosurfactants as marine oil spill dispersants: Governing factors, synergetic effects and fates. Journal of Hazardous Materials, 416, 126122.

Cândido, T. R., de Souza Mendonça, R., Lins, U. M. D. B. L., de Souza, A. F., Rodriguez, D. M., de Campos-Takaki, G. M., & da Silva Andrade, R. F. (2022). Production of biosurfactants by Mucoralean fungi isolated from Caatinga bioma soil using industrial waste as renewable substrates. Research, Society and Development, 11(2), e13411225332-e13411225332.

Chotard, M., Mounier, J., Meye, R., Padel, C., Claude, B., Nehmé, R., & Lucchesi, M. E. (2022). Biosurfactant-producing Mucor strains: selection, screening, and chemical characterization. Applied Microbiology, 2(1), 248-259.

Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Applied and environmental microbiology, 53(2), 224-229.

dos Santos, R. A., Rodríguez, D. M., Ferreira, I. N. D. S., de Almeida, S. M., Takaki, G. M. D. C., & de Lima, M. A. B. (2021). Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environmental Technology, 1-12.

Fai, A. E. C., Simiqueli, A. P. R., de Andrade, C. J., Ghiselli, G., & Pastore, G. M. (2015). Optimized production of biosurfactant from Pseudozyma tsukubaensis using cassava wastewater and consecutive production of galactooligosaccharides: an integrated process. Biocatalysis and Agricultural Biotechnology, 4(4), 535-542. https://doi.org/10.1016/j.bcab.2015.10.001

Fonseca, T. C. S., Rodríguez, D. M., Mendonça, R. S., Ferreira, I.N.S., Costa, L. O., & Campos-Takaki, G. M. (2022). Eco-friendly production of thermostable, halotolerant and pH wide range biosurfactant by Issatchenkia orientalis UCP 1603. Research, Society and Development, 11(10).

Gaur, V. K., Sharma, P., Sirohi, R., Varjani, S., Taherzadeh, M. J., Chang, J. S., & Kim, S. H. (2022). Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource technology, 343, 126059.

Gautam, G., Mishra, V., Verma, P., Pandey, A. K., & Negi, S. (2014). A cost effective strategy for production of bio-surfactant from locally isolated Penicillium chrysogenum SNP5 and its applications. Journal of Bioprocessing & Biotechniques, 4(6), 1.

Hasanizadeh, P., Moghimi, H., & Hamedi, J. (2018). Biosurfactant production by Mucor circinelloides: Environmental applications and surface‐active properties. Engineering in Life Sciences, 18(5), 317-325.

Jahan, R., Bodratti, A. M., Tsianou, M., & Alexandridis, P. (2020). Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Advances in colloid and interface science, 275, 102061.

Javed, S., Faisal, M., Raza, Z. A., Rehman, A., & Shahid, M. (2022). Isolation and characterization of indigenous biosurfactant producing Bacillus and Staphylococcus spp. during motor oil degradation. Applied Ecology and Environmental Research, 20(1), 79-102.

Jiménez-Peñalver, P., Rodríguez, A., Daverey, A., Font, X., & Gea, T. (2019). Use of wastes for sophorolipids production as a transition to circular economy: state of the art and perspectives. Reviews in Environmental Science and Bio/Technology, 18(3), 413-435.

Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L., & Kokare, C. (2012). Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination, 285, 198-204.

Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149-156.

Lamichhane, S., Krishna, K. B., & Sarukkalige, R. (2017). Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: a review. Journal of Environmental Management, 199, 46-61.

Marques, N. S. A. A., de Lima, T. A., da Silva Andrade, R. F., Júnior, J. F. B., Okada, K., & Takaki, G. M. C. (2019). Lipopeptide biosurfactant produced by Mucor circinelloides UCP/WFCC 0001 applied in the removal of crude oil and engine oil from soil. Acta Scientiarum. Technology, 41, e38986-e38986.

Manocha, M. S., San-Blas, G., & Centeno, S. (1980). Lipid composition of Paracoccidioides brasiliensis: possible correlation with virulence of different strains. Microbiology, 117(1), 147-154.

Mendonça, R. S., Sá, A. V. P., Rosendo, L. A., Santos, R. A., Marques, N. S. A. A., Souza, A. F., Rodriguez, D. M., & Campos-Takaki, G. M. (2021). Production of biosurfactant and lipids by a novel strain of Absidia cylindrospora UCP 1301 isolated from Caatinga soil using low-cost agro-industrial byproducts. Brazilian Journal of Development, 7(1), 8300-8313. 10.34117/bjdv7n1-564

Morikawa, M., Hirata, Y., & Imanaka, T. (2000). A study on the structure–function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1488(3), 211-218.

Negin, C., Ali, S., & Xie, Q. (2017). Most common surfactants employed in chemical enhanced oil recovery. Petroleum, 3(2), 197-211.

Ofon, U. A., Shaibu, S. E., Ndubuisi-Nnaji, U. U., Inam, E. J., Okop, I. J., Enin, G. N., & Ibuotenang, N. D. (2022). Bio-and chemical surfactants for remediation of emerging organic contaminants. In Emerging Contaminants in the Terrestrial-Aquatic-Atmosphere Continuum: (pp. 367-380). Elsevier.

Otzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio. International journal of morphology, 35(1), 227-232.

Parthipan, P., Elumalai, P., Ting, Y. P., Rahman, P. K., & Rajasekar, A. (2018). Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX. International Biodeterioration & Biodegradation, 129, 67-80.

Pele, M. A., Montero-Rodriguez, D., Rubio-Ribeaux, D., Souza, A. F., Luna, M. A., Santiago, M. F., & Campos-Takaki, G. M. (2018). Development and improved selected markers to biosurfactant and bioemulsifier production by Rhizopus strains isolated from Caatinga soil. African Journal of Biotechnology, 17(6), 150-157.

Pele, M. A., Ribeaux, D. R., Vieira, E. R., Souza, A. F., Luna, M. A., Rodríguez, D. M., & Campos-Takaki, G. M. (2019). Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electronic Journal of Biotechnology, 38, 40-48.

Pinto, M. I. S., Campos Guerra, J. M., Meira, H. M., Sarubbo, L. A., & de Luna, J. M. (2022). A Biosurfactant from Candida bombicola: Its Synthesis, Characterization, and its Application as a Food Emulsions. Foods, 11(4), 561.

Purwasena, I. A., Astuti, D. I., Syukron, M., Amaniyah, M., & Sugai, Y. (2019). Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR. Journal of Petroleum Science and Engineering, 183, 106383.

Rahman, P. K., Mayat, A., Harvey, J. G. H., Randhawa, K. S., Relph, L. E., & Armstrong, M. C. (2019). Biosurfactants and bioemulsifiers from marine algae. In The Role of Microalgae in Wastewater Treatment (pp. 169-188). Springer, Singapore. 10.1007/978-981-13-1586-2_13

Santiago, M. G., Lins, U. M. D. B. L., de Campos Takaki, G. M., da Costa Filho, L. O., & da Silva Andrade, R. F. (2021). Produção de biossurfactante por Mucor circinelloides UCP 0005 usando novo meio de cultura formulado com cascas de jatobá (Hymenaea courbaril L.) e milhocina. Brazilian Journal of Development, 7(5), 51292-51304.

Silva, A. C. S. D., Santos, P. N. D., Silva, T. A. L., Andrade, R. F. S., & Campos-Takaki, G. M. (2018). Biosurfactant production by fungi as a sustainable alternative. Arquivos do Instituto Biológico, 85.

Techaoei, S., Leelapornpisid, P., Santiarwarn, D., & Lumyong, S. (2007). Preliminary screening of biosurfactant-producing microorganisms isolated from hot spring and garages in Northern Thailand. Current Applied Science and Technology, 7(1-1), 38-43.

Uzoigwe, C., Burgess, J. G., Ennis, C. J., & Rahman, P. K. (2015). Bioemulsifiers are not biosurfactants and require different screening approaches. Frontiers in microbiology, 6, 245.

Varjani, S. J., & Upasani, V. N. (2017). Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource technology, 232, 389-397.

Downloads

Published

21/08/2022

How to Cite

BIONE, A. P.; LINS, A. B. .; MELO, C. F. de .; MENDONÇA, R. de S. .; RODRÍGUEZ, D. M. .; CAMPOS-TAKAKI, G. M. de . Eco-friendly production of biosurfactant by Mucor circinelloides UCP 0018 using agro-industrial substrates. Research, Society and Development, [S. l.], v. 11, n. 11, p. e88111133025, 2022. DOI: 10.33448/rsd-v11i11.33025. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33025. Acesso em: 19 apr. 2024.

Issue

Section

Engineerings