Recent advances and challenges on chitosan-based nanostructures by polyelectrolyte complexation and ionic gelation for anthocyanins stabilization




Encapsulation; Biopolymeric nanoparticle; Nanocomplexes; Biopolymers.


Anthocyanins are water-soluble polyphenols responsible for the color of many fruits, flowers, and vegetables. In addition to natural dyes, anthocyanins are also related to the prevention of several chronic diseases. However, anthocyanins are extremely sensitive to variations in pH, temperature, light, enzymes, and other environment variables, being necessary to employ artifices and technologies to expand their application in both the food and pharmaceutical sectors. In this context, biopolymeric nanoparticles can be used to protect and intensify the functions conferred to the anthocyanins. Among the techniques used, polyelectrolytic complexation (PC) and ionic gelation (IG) stands out due to convenience, speed, low cost, and possibility of using a versatile, biocompatible and natural polymer such as chitosan. Therefore, scoring and understanding the main factors that affect the stability of chitosan-based nanoparticles produced by PC and IG, and knowing the strategies that can be adopted to overcome these problems is extremely important. Thus, this review aims to provide an overview of anthocyanins and biopolymeric nanoparticles with an emphasis on PC and IG techniques. The main challenges that need to be faced when anthocyanins are incorporated into these nanoparticles will be scored, mainly when chitosan is used as a polymeric base. Also, some directions will be given to those who intend to develop new projects focusing on the stabilization of anthocyanins.


Abdel-Hafez, S. M., Hathout, R. M., & Sammour, O. A. (2014). Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs. International journal of biological macromolecules, 64, 334-340. 10.1016/j.ijbiomac.2013.11.041

Abdul Khalil H.P.S., Saurabh, C. K., Adnan, A. S., Fazita, M. N., Syakir, M. I., Davoudpour, Y., & Dungani, R. (2016). A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydrate polymers, 150, 216-226.

Ahmad, M., Ashraf, B., Gani, A., & Gani, A. (2018). Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: Microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. International Journal of Biological Macromolecules, 109, 435–442. 10.1016/j.ijbiomac.2017.11.122

Akhavan, S., & Jafari, S. M. (2017). Chapter 6-Nanoencapsulation of natural food colorants. Nanoencapsulation of food bioactive ingredients, 223-60. 10.1016/B978-0-12-809740-3.00006-4

Ali, A., & Ahmed, S. (2018). A review on chitosan and its nanocomposites in drug delivery. International journal of biological macromolecules, 109, 273-286.

Al‐Rashed, M. M., Niknezhad, S., & Jana, S. C. (2019). Mechanism and factors influencing formation and stability of chitosan/lignosulfonate nanoparticles. Macromolecular Chemistry and Physics, 220(1), 1800338.

Alvarez-Suarez, J. M., Giampieri, F., Tulipani, S., Casoli, T., Di Stefano, G., González-Paramás, A. M., Santos-Buelga, C., Busco, F., Quiles, J. L., Cordero, M. D., Bompadre, S., Mezzeti, B., & Battino, M. (2014). One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. The Journal of Nutritional Biochemistry, 25(3), 289–294. 10.1016/j.jnutbio.2013.11.002

Amin, F. U., Shah, S. A., Badshah, H., Khan, M., & Kim, M. O. (2017). Anthocyanins encapsulated by PLGA@ PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ 1–42-induced oxidative stress. Journal of nanobiotechnology, 15(1), 12. 10.1186/s12951-016-0227-4

Arpagaus, C., Collenberg, A., Rütti, D., Assadpour, E., & Jafari, S. M. (2018). Nano spray drying for encapsulation of pharmaceuticals. International journal of pharmaceutics, 546(1-2), 194-214. 10.1016/j.ijpharm.2018.05.037

Arroyo-Maya, I. J., & McClements, D. J. (2015). Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food research international, 69, 1-8.

Asiri, S. M., Khan, F. A., & Bozkurt, A. (2018). Synthesis of chitosan nanoparticles, chitosan-bulk, chitosan nanoparticles conjugated with glutaraldehyde with strong anti-cancer proliferative capabilities. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), S1152-S1161. 10.1080/21691401.2018.1533846

Askar, K. A., Alsawad, Z. H., & Khalaf, M. N. (2015). Evaluation of the pH and thermal stabilities of rosella anthocyanin extracts under solar light. Beni-Suef University Journal of Basic and Applied Sciences, 4(3), 262-268.

Atnip, A. A., Sigurdson, G. T., Bomser, J., & Giusti, M. M. (2017). Time, concentration, and pH-dependent transport and uptake of anthocyanins in a human gastric epithelial (NCI-N87) cell line. International Journal of Molecular Sciences, 18(2), 446. 10.3390/ijms18020446

Babaloo, F., & Jamei, R. (2018). Anthocyanin pigment stability of Cornus mas–Macrocarpa under treatment with pH and some organic acids. Food science & nutrition, 6(1), 168-173.

Bazana, M. T., Codevilla, C. F., & de Menezes, C. R. (2019). Nanoencapsulation of bioactive compounds: challenges and perspectives. Current opinion in food science, 26, 47-56.

Bimpilas, A., Panagopoulou, M., Tsimogiannis, D., & Oreopoulou, V. (2016). Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chemistry, 197, 39-46.

Bobbio, F. O., & Bobbio, P. A. (2003). Introdução à química de alimentos. São Paulo: Livraria Varela.

Brouillard, R., Chassaing, S., Isorez, G., Kueny-Stotz, M., & Figueiredo, P. (2010). The visible flavonoids or anthocyanins: From research to applications.

Bueno, J. M., Sáez-Plaza, P., Ramos-Escudero, F., Jiménez, A. M., Fett, R., & Asuero, A. G. (2012). Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry, 42(2), 126-151.

Bulatao, R. M., Samin, J. P. A., Salazar, J. R., & Monserate, J. J. (2017). Encapsulation of anthocyanins from black rice (Oryza Sativa L.) bran extract using chitosan-alginate nanoparticles. J. Food Res., 6(3), 40. 10.5539/jfr.v6n3p40

Burin, V. M., Rossa, P. N., Ferreira-Lima, N. E., Hillmann, M. C. R., & Boirdignon-Luiz, M. T. (2010). Anthocyanins: optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. International Journal of Food Science & Technology, 46(1), 186–193. 10.1111/j.1365-2621.2010.02486.x

Cahyana, Y., & Gordon, M. H. (2013). Interaction of anthocyanins with human serum albumin: Influence of pH and chemical structure on binding. Food chemistry, 141(3), 2278-2285. 10.1016/j.foodchem.2013.05.026

Cai, Y., & Lapitsky, Y. (2014). Formation and dissolution of chitosan/pyrophosphate nanoparticles: is the ionic crosslinking of chitosan reversible?. Colloids and Surfaces B: Biointerfaces, 115, 100-108.

Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food chemistry, 113(4), 859-871.

Chen, B. H., & Stephen Inbaraj, B. (2019). Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability. Nutrients, 11(5), 1052. 10.3390/nu11051052

Chi, J., Ge, J., Yue, X., Liang, J., Sun, Y., Gao, X., & Yue, P. (2019). Preparation of nanoliposomal carriers to improve the stability of anthocyanins. LWT, 109, 101–107. 10.1016/j.lwt.2019.03.070

Comin, V. M., Lopes, L. Q., Quatrin, P. M., de Souza, M. E., Bonez, P. C., Pintos, F. G., & Santos, R. C. (2016). Influence of Melaleuca alternifolia oil nanoparticles on aspects of Pseudomonas aeruginosa biofilm. Microbial pathogenesis, 93, 120-125. 10.1016/j.micpath.2016.01.019

Costalat, M., Alcouffe, P., David, L., & Delair, T. (2015). Macro-hydrogels versus nanoparticles by the controlled assembly of polysaccharides. Carbohydrate polymers, 134, 541-546. 10.1016/j.carbpol.2015.07.071

Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, et al. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr. 2013;97:995–1003. 10.3945/ajcn.112.049247

Dangles, O. & Brouillard, R. (1992). A spectrophotometric method based on the anthocyanin copigmentation interaction and applied to the quantitative study of molecular complexes. Journal Chemical Society Perkin Trans, 2, 247–257.

De Robertis, S., Bonferoni, M. C., Elviri, L., Sandri, G., Caramella, C., & Bettini, R. (2015). Advances in oral controlled drug delivery: the role of drug–polymer and interpolymer non-covalent interactions. Expert opinion on drug delivery, 12(3), 441-453. 10.1517/17425247.2015.966685

Ertan, K., Türkyılmaz, M., & Özkan, M. (2018). Effect of sweeteners on anthocyanin stability and colour properties of sour cherry and strawberry nectars during storage. Journal of food science and technology, 55(10), 4346-4355. 10.1007/s13197-018-3387-4

Esfanjani, A. F., & Jafari, S. M. (2016). Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces, 146, 532-543.

Espitia, P. J. P., Soares, N. D. F. F., Teófilo, R. F., dos Reis Coimbra, J. S., Vitor, D. M., Batista, R. A., & Medeiros, E. A. A. (2013). Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate polymers, 94(1), 199-208.

Fan, W., Yan, W., Xu, Z., & Ni, H. (2012). Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and surfaces B: Biointerfaces, 90, 21-27.

Fathi, M., Martin, A., & McClements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in food science & technology, 39(1), 18-39.

Feng, C., Wang, Z., Jiang, C., Kong, M., Zhou, X., Li, Y., & Chen, X. (2013). Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. International journal of pharmaceutics, 457(1), 158-167. 10.1016/j.ijpharm.2013.07.079

Fidan-Yardimci, M., Akay, S., Sharifi, F., Sevimli-Gur, C., Ongen, G., & Yesil-Celiktas, O. (2019). A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport. Food chemistry, 293, 57-65.

Floris, A., Meloni, M. C., Lai, F., Marongiu, F., Maccioni, A. M., & Sinico, C. (2013). Cavitation effect on chitosan nanoparticle size: A possible approach to protect drugs from ultrasonic stress. Carbohydrate polymers, 94(1), 619-625.

Furtado, G. T. F. D. S., Fideles, T. B., Cruz, R. D. C. A. L., Souza, J. W. D. L., Rodriguez Barbero, M. A., & Fook, M. V. L. (2018). Chitosan/NaF Particles Prepared Via Ionotropic Gelation: Evaluation of Particles Size and Morphology. Materials Research, 21(4).

Ge, J., Yue, P., Chi, J., Liang, J., & Gao, X. (2018). Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids, 74, 23-31.

Ge, J., Yue, X., Wang, S., Chi, J., Liang, J., Sun, Y., & Yue, P. (2019). Nanocomplexes composed of chitosan derivatives and β-Lactoglobulin as a carrier for anthocyanins: Preparation, stability and bioavailability in vitro. Food Research International, 116, 336-345. 10.1016/j.foodres.2018.08.045

Gokce, Y., Cengiz, B., Yildiz, N., Calimli, A., & Aktas, Z. (2014). Ultrasonication of chitosan nanoparticle suspension: Influence on particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 75-81.

Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., & Alexander, R. W. (1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circulation Research, 74(6), 1141–1148. 10.1161/01.res.74.6.1141

Gu, B., Linehan, B., & Tseng, Y. C. (2015). Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions. International journal of pharmaceutics, 491(1-2), 208-217. 10.1016/j.ijpharm.2015.06.006

Guldiken, B., Gibis, M., Boyacioglu, D., Capanoglu, E., & Weiss, J. (2018). Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food research international, 108, 491-497. 10.1016/j.foodres.2018.03.071

Guo, H., & Xia, M. (2018). Anthocyanins and diabetes regulation. In Polyphenols: Mechanisms of Action in Human Health and Disease (pp. 135-145). Academic Press. 10.1016/b978-0-12-813006-3.00012-x

Ha, C. T., Lien, N. T. H., Anh, N. D., & Lam, N. L. (2017). Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications. Journal of Electronic Materials, 46(12), 6843–6847. 10.1007/s11664-017-5743-y

Haddar, W., Ben Ticha, M., Meksi, N., & Guesmi, A. (2017). Application of anthocyanins as natural dye extracted from Brassica oleracea L. var. capitata f. rubra: dyeing studies of wool and silk fibres. Natural Product Research, 32(2), 141–148. 10.1080/14786419.2017.1342080

Hamman, J. H. (2010). Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Marine drugs, 8(4), 1305-1322. 10.3390/md8041305

He, B., Ge, J., Yue, P., Yue, X., Fu, R., Liang, J., & Gao, X. (2017). Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food chemistry, 221, 1671-1677.

He, Z., Liu, Z., Tian, H., Hu, Y., Liu, L., Leong, K. W., & Chen, Y. (2018). Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale, 10(7), 3307-3319.

He, Z., Santos, J. L., Tian, H., Huang, H., Hu, Y., Liu, L., & Mao, H. Q. (2017) Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials, 130, 28-41.

Isik, B. S., Altay, F., & Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food chemistry, 265, 260-273.

Iosub, I., Kajzar, F., Makowska-Janusik, M., Meghea, A., Tane, A., & Rau, I. (2012). Electronic structure and optical properties of some anthocyanins extracted from grapes. Optical Materials, 34(10), 1644-1650.

Jafari, S. M. (2017). An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation technologies for the food and nutraceutical industries (pp. 1-34). Academic Press. 10.1016/B978-0-12-809436-5.00001-X

Jeong, D., Bae, B., Park, S., & Na, K. (2016). Reactive oxygen species responsive drug releasing nanoparticle based on chondroitin sulfate–anthocyanin nanocomplex for efficient tumor therapy. Journal of Controlled Release, 222, 78–85. 10.1016/j.jconrel.2015.12.009

Jeong, D., & Na, K. (2012). Chondroitin sulfate based nanocomplex for enhancing the stability and activity of anthocyanin. Carbohydrate Polymers, 90(1), 507–515. 10.1016/j.carbpol.2012.05.072

Jiang, T., Mao, Y., Sui, L., Yang, N., Li, S., Zhu, Z., & He, Y. (2019). Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food chemistry, 274, 460-470.

Jonassen, H., Kjøniksen, A. L., & Hiorth, M. (2012). Effects of ionic strength on the size and compactness of chitosan nanoparticles. Colloid and Polymer Science, 290(10), 919-929. 10.1007/s00396-012-2604-3

Joye, I. J., Davidov-Pardo, G., & McClements, D. J. (2014). Nanotechnology for increased micronutrient bioavailability. Trends in food science & technology, 40(2), 168-182.

Joye, I. J., & McClements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, 19(5), 417-427.

Ju, M., Zhu, G., Huang, G., Shen, X., Zhang, Y., Jiang, L., & Sui, X. (2020). A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocolloids, 99, 105329.

Jung, Y. K., Joo, K. S., Rho, S. J., & Kim, Y. R. (2020). pH-dependent antioxidant stability of black rice anthocyanin complexed with cycloamylose. LWT, 109474.

Karaoglan, H. A., Keklik, N. M., & Isıklı, N. D. (2019). Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of food science and technology, 56(1), 30-39.

Kay, C. D., Pereira-Caro, G., Ludwig, I. A., Clifford, M. N., & Crozier, A. (2017). Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annual Review of Food Science and Technology, 8, 155-180. 10.1146/annurev-food-030216-025636

Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. 10.1080/16546628.2017.1361779

Ko, A., Lee, J. S., Sop Nam, H., & Gyu Lee, H. (2017). Stabilization of black soybean anthocyanin by chitosan nanoencapsulation and copigmentation. Journal of Food Biochemistry, 41(2), e12316.

Koley, T. K., Singh, S., Khemariya, P., Sarkar, A., Kaur, C., Chaurasia, S. N. S., & Naik, P. S. (2014). Evaluation of bioactive properties of Indian carrot (Daucus carota L.): A chemometric approach. Food research international, 60, 76-85.

Kumari, L., & Badwaik, H. R. (2019). Polysaccharide-based nanogels for drug and gene delivery. In Polysaccharide Carriers for Drug Delivery (pp. 497-557). Woodhead Publishing.

Kurozawa, L. E., & Hubinger, M. D. Hydrophilic food compounds encapsulation by ionic gelation. Current Opinion in Food Science, v. 15, p. 50-55, 2017.

Lalevée, G., Sudre, G., Montembault, A., Meadows, J., Malaise, S., Crépet, A., & Delair, T. (2016). Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan—Physicochemical study and structural analysis. Carbohydrate polymers, 154, 86-95.

Lee, J. H., & Choung, M. G. (2011). Identification and characterisation of anthocyanins in the antioxidant activity-containing fraction of Liriope platyphylla fruits. Food Chemistry, 127(4), 1686-1693.

Liang, T., Zhang, Z., & Jing, P. (2019). Black rice anthocyanins embedded in self-assembled chitosan/chondroitin sulfate nanoparticles enhance apoptosis in HCT-116 cells. Food chemistry, 301, 125280.

Luo, Y., & Wang, Q. (2014). Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. International journal of biological macromolecules, 64, 353-367.

Luo, Y., Zhang, B., Cheng, W. H., & Wang, Q. (2010). Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating. Carbohydrate Polymers, 82(3), 942-951. doi : 10.1016/j.carbpol.2010.06.029

Mazza, G., & Brouillard, R. (1987). Recent developments in the stabilization of anthocyanins in food products. Food chemistry, 25(3), 207-225.

Meka, V. S., Sing, M. K., Pichika, M. R., Nali, S. R., Kolapalli, V. R., & Kesharwani, P. (2017). A comprehensive review on polyelectrolyte complexes. Drug discovery today, 22(11), 1697-1706.

Mohammed, M. A., Syeda, J., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9(4), 53. 10.3390/pharmaceutics9040053

Morais, C. A., de Rosso, V. V., Estadella, D., & Pisani, L. P. (2016). Anthocyanins as inflammatory modulators and the role of the gut microbiota. Journal of Nutritional Biochemistry, 33, 1–7.

Morris, G. A., Castile, J., Smith, A., Adams, G. G., & Harding, S. E. (2011). The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)–chitosan nanoparticles. Carbohydrate polymers, 84(4), 1430-1434.

Mu, R., Hong, X., Ni, Y., Li, Y., Pang, J., Wang, Q., & Zheng, Y. (2019). Recent trends and applications of cellulose nanocrystals in food industry. Trends in Food Science & Technology, 93, 136-144.

Mueller, D., Jung, K., Winter, M., Rogoll, D., Melcher, R., Kulozik, U., Schwarz, K., & Richling, E. (2018). Encapsulation of anthocyanins from bilberries – Effects on bioavailability and intestinal accessibility in humans. Food Chemistry, 248, 217–224. 10.1016/j.foodchem.2017.12.058

Norkaew, O., Thitisut, P., Mahatheeranont, S., Pawin, B., Sookwong, P., Yodpitak, S., & Lungkaphin, A. (2019). Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food chemistry, 294, 493-502.

Oehlke, K., Adamiuk, M., Behsnilian, D., Gräf, V., Mayer-Miebach, E., Walz, E., & Greiner, R. (2014). Potential bioavailability enhancement of bioactive compounds using food-grade engineered nanomaterials: a review of the existing evidence. Food & function, 5(7), 1341-1359. 10.1039/c3fo60067j

Paliwal, R., & Palakurthi, S. (2014). Zein in controlled drug delivery and tissue engineering. Journal of Controlled Release, 189, 108-122.

Patil, J. S., Kamalapur, M. V., Marapur, S. C., & Kadam, D. V. (2010). Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Digest Journal of Nanomaterials and Biostructures, 5(1), 241-248.

Peixoto, F. M., Fernandes, I., Gouvêa, A. C. M., Santiago, M. C., Borguini, R. G., Mateus, N., & Ferreira, I. M. (2016). Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. Journal of functional foods, 24, 373-381.

Pina, F., Melo, M. J., Laia, C. A., Parola, A. J., & Lima, J. C. (2012). Chemistry and applications of flavylium compounds: a handful of colours. Chemical Society Reviews, 41(2), 869-908. 10.1039/c1cs15126f

Pisoschi, A. M., Pop, A., Cimpeanu, C., Turcuş, V., Predoi, G., & Iordache, F. (2018). Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity-A critical view. European journal of medicinal chemistry, 157, 1326-1345.

Pola, C. C., Moraes, A. R., Medeiros, E. A., Teófilo, R. F., Soares, N. F., & Gomes, C. L. (2019). Development and optimization of pH-responsive PLGA-chitosan nanoparticles for triggered release of antimicrobials. Food chemistry, 295, 671-679.

Prietto, L., Pinto, V. Z., El Halal, S. L. M., de Morais, M. G., Costa, J. A. V., Lim, L. T., & Zavareze, E. D. R. (2018). Ultrafine fibers of zein and anthocyanins as natural pH indicator. Journal of the Science of Food and Agriculture, 98(7), 2735-2741. 10.1002/jsfa.8769

Pujana, M. A., Pérez-Álvarez, L., Iturbe, L. C. C., & Katime, I. (2013). Biodegradable chitosan nanogels crosslinked with genipin. Carbohydrate Polymers, 94(2), 836-842. 10.1016/j.carbpol.2013.01.082

Qian, B. J., Liu, J. H., Zhao, S. J., Cai, J. X., & Jing, P. (2017). The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Food chemistry, 228, 526-532. 10.1016/j.foodchem.2017.01.120

Ramasamy, T., Tran, T. H., Cho, H. J., Kim, J. H., Kim, Y. I., Jeon, J. Y., & Kim, J. O. (2014). Chitosan-based polyelectrolyte complexes as potential nanoparticulate carriers: physicochemical and biological characterization. Pharmaceutical research, 31(5), 1302-1314.

Rampino, A., Borgogna, M., Blasi, P., Bellich, B., & Cesàro, A. (2013). Chitosan nanoparticles: preparation, size evolution and stability. International journal of pharmaceutics, 455(1-2), 219-228. 10.1016/j.ijpharm.2013.07.034

Ravanfar, R., Tamaddon, A. M., Niakousari, M., & Moein, M. R. (2016). Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket–Burman and Box–Behnken designs. Food chemistry, 199, 573-580. 10.1016/j.foodchem.2015.12.061

Reis, J. F., Monteiro, V. V. S., de Souza Gomes, R., do Carmo, M. M., da Costa, G. V., Ribera, P. C., & Monteiro, M. C. (2016). Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. Journal of Translational Medicine, 14(1), 315.

Ren, X., Hou, T., , Q., Zhang, X., Hu, D., Xu, B., & Ma, H. (2019). Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation. Food chemistry, 279, 223-230.

Robert, P., & Fredes, C. (2015). The encapsulation of anthocyanins from berry-type fruits. Trends in foods. Molecules, 20(4), 5875-5888. 10.3390/molecules20045875

Roobha, J. J., Saravanakumar, M., Aravindhan, K. M., & devi, P. S. (2011). The effect of light, temperature, ph on stability of anthocyanin pigments in Musa acuminata bract. Research in Plant Biology, 1(5). Retrieved from

Santos-Buelga, C., & González-Paramás, A. M. (2018). Anthocyanins. Reference Module in Food Science, 1–12.

Santos, J. L., Ren, Y., Vandermark, J., Archang, M. M., Williford, J. M., Liu, H. W., & Mao, H. Q. (2016). Continuous production of discrete plasmid DNA‐polycation nanoparticles using flash nanocomplexation. Small, 12(45), 6214-6222. 10.1002/smll.201601425

Shariatinia, Z., & Barzegari, A. (2019). Polysaccharide hydrogel films/membranes for transdermal delivery of therapeutics. In Polysaccharide Carriers for Drug Delivery (pp. 639-684). Woodhead Publishing.

Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 132, 109077.

Shim, H. R., Lee, J. S., Nam, H. S., & Lee, H. G. (2016). Nanoencapsulation of synergistic combinations of acai berry concentrate to improve antioxidant stability. Food science and biotechnology, 25(6), 1597-1603.

Shovsky, A., Varga, I., Makuška, R., & Claesson, P. M. (2009). Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration. Langmuir, 25(11), 6113-6121.

Singh, S., Kalia, P., Meena, R. K., Mangal, M., Islam, S., Saha, S., & Tomar, B. S. (2020). Genetics and Expression Analysis of Anthocyanin Accumulation in Curd Portion of Sicilian Purple to Facilitate Biofortification of Indian Cauliflower. Frontiers in plant science, 10, 1766.

Sipahli, S., Mohanlall, V., & Mellem, J. J. (2017). Stability and degradation kinetics of crude anthocyanin extracts from H. sabdariffa. Food Science and Technology, 37(2), 209-215.

Siyawamwaya, M., Choonara, Y. E., Bijukumar, D., Kumar, P., Du Toit, L. C., & Pillay, V. (2015). A review: overview of novel polyelectrolyte complexes as prospective drug bioavailability enhancers. International Journal of Polymeric Materials and Polymeric Biomaterials, 64(18), 955-968. 10.1080/00914037.2015.1038816

Soares, N. F. F. (1998). Bitterness reduction in citrus juice through naringinase immobilized into polymer film. Ph.D. Dissertation. Cornell University, New York, 130.

Sreekumar, S., Goycoolea, F. M., Moerschbacher, B. M., & Rivera-Rodriguez, G. R. (2018). Parameters influencing the size of chitosan-TPP nano-and microparticles. Scientific reports, 8(1), 1-11.

Srivastava, J., & Vankar, P. S. (2010). Canna indica flower: New source of anthocyanins. Plant physiology and biochemistry, 48(12), 1015-1019.

Stoll, L., Costa, T. M. H., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. (2015). Microencapsulation of Anthocyanins with Different Wall Materials and Its Application in Active Biodegradable Films. Food and Bioprocess Technology, 9(1), 172–181. 10.1007/s11947-015-1610-0

Stoll, L., Silva, A. M., Iahnke, A. O. e S., Costa, T. M. H., Flôres, S. H., & Rios, A. de O. (2017). Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extra-virgin olive oil during storage. Journal of Food Processing and Preservation, 41(6), e13218. 10.1111/jfpp.13218

Suket, N., Srisook, E., & Hrimpeng, K. (2014). Antimicrobial activity of the anthocyanins isolated from purple field corn (Zea mays L.) Cob against Candida spp. IOSR J Pharm Biol Sci, 9, 40-4. 10.9790/3008-09424044

Tarone, A. G., Cazarin, C. B. B., & Junior, M. R. M. (2020). Anthocyanins: New techniques and challenges in microencapsulation. Food Research International, 133, 109092.

Tan, C., Celli, G. B., & Abbaspourrad, A. (2018). Copigment-polyelectrolyte complexes (PECs) composite systems for anthocyanin stabilization. Food Hydrocolloids, 81, 371-379.

Tan, C., Celli, G. B., Selig, M. J., & Abbaspourrad, A. (2018). Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. Food chemistry, 264, 342-349.

Tan, C., Selig, M. J., & Abbaspourrad, A. (2018). Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation. Carbohydrate polymers, 181, 124-131.

Terefe, N. S., Netzel, G. A., & Netzel, M. E. (2019). Copigmentation with Sinapic Acid Improves the Stability of Anthocyanins in High-Pressure-Processed Strawberry Purees. Journal of Chemistry, 2019.

Thibado, S., Thornthwaite, J., Ballard, T., & Goodman, B. (2017). Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins. Molecular and Clinical Oncology, 8(2), 330-335. 10.3892/mco.2017.1520

Tong, Y., Deng, H., Kong, Y., Tan, C., Chen, J., Wan, M., & Li, L. (2020). Stability and structural characteristics of amylopectin nanoparticle-binding anthocyanins in Aronia melanocarpa. Food chemistry, 311, 125687.

Tsai, M. L., Chen, R. H., Bai, S. W., & Chen, W. Y. (2011). The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer. Carbohydrate Polymers, 84(2), 756-761.

Vashist, A., Kaushik, A., Vashist, A., Bala, J., Nikkhah-Moshaie, R., Sagar, V., et al. (2018). Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discovery Today, 23(7), 1359–6446.

Wallace, T. C., & Giusti, M. M. (2015). Anthocyanins. Advances in Nutrition, 6(5), 620-622.

Wang, F., Yang, Y., Ju, X., Udenigwe, C. C., & He, R. (2018). Polyelectrolyte complex nanoparticles from chitosan and acylated rapeseed cruciferin protein for curcumin delivery. Journal of agricultural and food chemistry, 66(11), 2685-2693. 10.1021/acs.jafc.7b05083

Wang, W., Jung, J., & Zhao, Y. (2017). Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydrate polymers, 157, 1246-1253.

Wang, H., Qian, C., & Roman, M. (2011). Effects of pH and salt concentration on the formation and properties of chitosan–cellulose nanocrystal polyelectrolyte–macroion complexes. Biomacromolecules, 12(10), 3708-3714.

Wang, H., & Roman, M. (2011). Formation and properties of chitosan− cellulose nanocrystal polyelectrolyte− macroion complexes for drug delivery applications. Biomacromolecules, 12(5), 1585-1593.

Wen, J., Gailani, M. A., & Yin, N. (2018). Filled hydrogel particles. Emulsion-based systems for delivery of food active compounds: formation, application, health and safety. John Wiley & Sons, Hoboken, 161-180.

Wu, D., Ensinas, A., Verrier, B., Cuvillier, A., Champier, G., Paul, S., & Delair, T. (2017). Ternary polysaccharide complexes: Colloidal drug delivery systems stabilized in physiological media. Carbohydrate Polymers, 172, 265-274.

Wu, D., Zhu, L., Li, Y., Zhang, X., Xu, S., Yang, G., & Delair, T. (2020). Chitosan-based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review. Carbohydrate Polymers, 116126.

Wu, S., Tao, Y., Zhang, H., & Su, Z. (2011). Preparation and characterization of water-soluble chitosan microparticles loaded with insulin using the polyelectrolyte complexation method. Journal of Nanomaterials, 2011.

Yadav, M., Behera, K., Chang, Y. H., & Chiu, F. C. (2020). Cellulose Nanocrystal Reinforced Chitosan Based UV Barrier Composite Films for Sustainable Packaging. Polymers, 12(1), 202.

Yan, L., Gao, S., Shui, S., Liu, S., Qu, H., Liu, C., & Zheng, L. (2018). Small interfering RNA-loaded chitosan hydrochloride/carboxymethyl chitosan nanoparticles for ultrasound-triggered release to hamper colorectal cancer growth in vitro. International Journal of Biological Macromolecules, 162, 1303-1310.

Yeon, K. M., You, J., Adhikari, M. D., Hong, S. G., Lee, I., Kim, H. S., & Sajomsang, W. (2019). Enzyme-immobilized chitosan nanoparticles as environmentally friendly and highly effective antimicrobial agents. Biomacromolecules, 20(7), 2477-2485.

Yousuf, B., Gul, K., Wani, A. A., & Singh, P. (2016). Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Critical reviews in food science and nutrition, 56(13), 2223-2230.

Yuan, Y., & Huang, Y. (2019). Ionically crosslinked polyelectrolyte nanoparticle formation mechanisms: the significance of mixing. Soft Matter, 15(48), 9871-9880.

Zapata, I. C., Álzate, A. F., Zapata, K., Arias, J. P., Puertas, M. A., & Rojano, B. (2019). Effect of pH, temperature and time of extraction on the antioxidant properties of Vaccinium meridionale Swartz. Journal of Berry Research, 9(1), 39-49. 10.3233/JBR-18299

Zhao, L. M., Shi, L. E., Zhang, Z. L., Chen, J. M., Shi, D. D., Yang, J., & Tang, Z. X. (2011). Preparation and application of chitosan nanoparticles and nanofibers. Brazilian Journal of Chemical Engineering, 28(3), 353-362.

Zhao, L., Temelli, F., & Chen, L. (2017). Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods, 34, 159-167.




How to Cite

FLORES, R. V.; SILVA, R. R. A.; OLIVEIRA, T. V. de; OLIVEIRA, E. B. de; STRINGHETA, P. C.; SOARES, N. de F. F. Recent advances and challenges on chitosan-based nanostructures by polyelectrolyte complexation and ionic gelation for anthocyanins stabilization. Research, Society and Development, [S. l.], v. 11, n. 10, p. e401111033092, 2022. DOI: 10.33448/rsd-v11i10.33092. Disponível em: Acesso em: 1 oct. 2022.



Agrarian and Biological Sciences