Avances y desafíos recientes en nanoestructuras a base de quitosano preparadas por complejación polielectrolítica y gelatinización iónica para la estabilización de antocianinas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i10.33092

Palabras clave:

Encapsulación; Nanopartículas biopoliméricas; Nanocomplejos; Biopolímeros.

Resumen

Antocianinas son polifenoles solubles en agua, responsables por la coloración de diversas frutas, flores y verduras. Además de los colorantes naturales, las antocianinas también están relacionadas con la prevención de varias enfermedades crónicas. Sin embargo, las antocianinas son muy sensibles a las variaciones de pH, temperatura, luz, enzimas y otras variables del medio en el que se encuentran, por lo que es necesario emplear artificios y tecnologías para ampliar su aplicación tanto en el sector alimentario como en el farmacéutico. En este contexto, las nanopartículas biopoliméricas pueden ser utilizadas para proteger las antocianinas e incluso potenciar las funciones que les confieren. Entre las técnicas utilizadas, la complejación polielectrolítica (PC) y la gelatinización iónica (IG) ocupan un lugar destacado por su practicidad, rapidez, bajo costo y la posibilidad de utilizar polímeros versátiles, biocompatibles y naturales, como el quitosano. Por lo tanto, calificar y comprender los principales factores que afectan la estabilidad de las nanopartículas a base de quitosano producidas por PC e IG, y conocer las estrategias que se pueden adoptar para superar estos problemas es extremadamente importante. Dado lo anterior, esta revisión tiene como objetivo proporcionar una visión general de las antocianinas y las nanopartículas biopoliméricas con énfasis en las técnicas de PC e IG, señalar los principales desafíos que deben afrontarse al incorporar antocianinas a estas nanopartículas cuando se utiliza quitosano como base polimérica; y dar dirección a quienes pretenden desarrollar nuevos proyectos enfocados en la estabilización de antocianinas.

Citas

Abdel-Hafez, S. M., Hathout, R. M., & Sammour, O. A. (2014). Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs. International journal of biological macromolecules, 64, 334-340. 10.1016/j.ijbiomac.2013.11.041

Abdul Khalil H.P.S., Saurabh, C. K., Adnan, A. S., Fazita, M. N., Syakir, M. I., Davoudpour, Y., & Dungani, R. (2016). A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydrate polymers, 150, 216-226. https://doi.org/10.1016/j.carbpol.2016.05.028

Ahmad, M., Ashraf, B., Gani, A., & Gani, A. (2018). Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: Microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. International Journal of Biological Macromolecules, 109, 435–442. 10.1016/j.ijbiomac.2017.11.122

Akhavan, S., & Jafari, S. M. (2017). Chapter 6-Nanoencapsulation of natural food colorants. Nanoencapsulation of food bioactive ingredients, 223-60. 10.1016/B978-0-12-809740-3.00006-4

Ali, A., & Ahmed, S. (2018). A review on chitosan and its nanocomposites in drug delivery. International journal of biological macromolecules, 109, 273-286. https://doi.org/10.1016/j.ijbiomac.2017.12.078

Al‐Rashed, M. M., Niknezhad, S., & Jana, S. C. (2019). Mechanism and factors influencing formation and stability of chitosan/lignosulfonate nanoparticles. Macromolecular Chemistry and Physics, 220(1), 1800338. https://doi.org/10.1002/macp.201800338

Alvarez-Suarez, J. M., Giampieri, F., Tulipani, S., Casoli, T., Di Stefano, G., González-Paramás, A. M., Santos-Buelga, C., Busco, F., Quiles, J. L., Cordero, M. D., Bompadre, S., Mezzeti, B., & Battino, M. (2014). One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. The Journal of Nutritional Biochemistry, 25(3), 289–294. 10.1016/j.jnutbio.2013.11.002

Amin, F. U., Shah, S. A., Badshah, H., Khan, M., & Kim, M. O. (2017). Anthocyanins encapsulated by PLGA@ PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ 1–42-induced oxidative stress. Journal of nanobiotechnology, 15(1), 12. 10.1186/s12951-016-0227-4

Arpagaus, C., Collenberg, A., Rütti, D., Assadpour, E., & Jafari, S. M. (2018). Nano spray drying for encapsulation of pharmaceuticals. International journal of pharmaceutics, 546(1-2), 194-214. 10.1016/j.ijpharm.2018.05.037

Arroyo-Maya, I. J., & McClements, D. J. (2015). Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food research international, 69, 1-8. https://doi.org/10.1016/j.foodres.2014.12.005

Asiri, S. M., Khan, F. A., & Bozkurt, A. (2018). Synthesis of chitosan nanoparticles, chitosan-bulk, chitosan nanoparticles conjugated with glutaraldehyde with strong anti-cancer proliferative capabilities. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), S1152-S1161. 10.1080/21691401.2018.1533846

Askar, K. A., Alsawad, Z. H., & Khalaf, M. N. (2015). Evaluation of the pH and thermal stabilities of rosella anthocyanin extracts under solar light. Beni-Suef University Journal of Basic and Applied Sciences, 4(3), 262-268. https://doi.org/10.1016/j.bjbas.2015.06.001

Atnip, A. A., Sigurdson, G. T., Bomser, J., & Giusti, M. M. (2017). Time, concentration, and pH-dependent transport and uptake of anthocyanins in a human gastric epithelial (NCI-N87) cell line. International Journal of Molecular Sciences, 18(2), 446. 10.3390/ijms18020446

Babaloo, F., & Jamei, R. (2018). Anthocyanin pigment stability of Cornus mas–Macrocarpa under treatment with pH and some organic acids. Food science & nutrition, 6(1), 168-173. https://doi.org/10.1002/fsn3.542

Bazana, M. T., Codevilla, C. F., & de Menezes, C. R. (2019). Nanoencapsulation of bioactive compounds: challenges and perspectives. Current opinion in food science, 26, 47-56. https://doi.org/10.1016/j.cofs.2019.03.005

Bimpilas, A., Panagopoulou, M., Tsimogiannis, D., & Oreopoulou, V. (2016). Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chemistry, 197, 39-46. https://doi.org/10.1016/j.foodchem.2015.10.095

Bobbio, F. O., & Bobbio, P. A. (2003). Introdução à química de alimentos. São Paulo: Livraria Varela.

Brouillard, R., Chassaing, S., Isorez, G., Kueny-Stotz, M., & Figueiredo, P. (2010). The visible flavonoids or anthocyanins: From research to applications. https://doi.org/10.1002/9781444323375.ch1

Bueno, J. M., Sáez-Plaza, P., Ramos-Escudero, F., Jiménez, A. M., Fett, R., & Asuero, A. G. (2012). Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry, 42(2), 126-151. https://doi.org/10.1080/10408347.2011.632314

Bulatao, R. M., Samin, J. P. A., Salazar, J. R., & Monserate, J. J. (2017). Encapsulation of anthocyanins from black rice (Oryza Sativa L.) bran extract using chitosan-alginate nanoparticles. J. Food Res., 6(3), 40. 10.5539/jfr.v6n3p40

Burin, V. M., Rossa, P. N., Ferreira-Lima, N. E., Hillmann, M. C. R., & Boirdignon-Luiz, M. T. (2010). Anthocyanins: optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. International Journal of Food Science & Technology, 46(1), 186–193. 10.1111/j.1365-2621.2010.02486.x

Cahyana, Y., & Gordon, M. H. (2013). Interaction of anthocyanins with human serum albumin: Influence of pH and chemical structure on binding. Food chemistry, 141(3), 2278-2285. 10.1016/j.foodchem.2013.05.026

Cai, Y., & Lapitsky, Y. (2014). Formation and dissolution of chitosan/pyrophosphate nanoparticles: is the ionic crosslinking of chitosan reversible?. Colloids and Surfaces B: Biointerfaces, 115, 100-108. https://doi.org/10.1016/j.colsurfb.2013.11.032

Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food chemistry, 113(4), 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001

Chen, B. H., & Stephen Inbaraj, B. (2019). Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability. Nutrients, 11(5), 1052. 10.3390/nu11051052

Chi, J., Ge, J., Yue, X., Liang, J., Sun, Y., Gao, X., & Yue, P. (2019). Preparation of nanoliposomal carriers to improve the stability of anthocyanins. LWT, 109, 101–107. 10.1016/j.lwt.2019.03.070

Comin, V. M., Lopes, L. Q., Quatrin, P. M., de Souza, M. E., Bonez, P. C., Pintos, F. G., & Santos, R. C. (2016). Influence of Melaleuca alternifolia oil nanoparticles on aspects of Pseudomonas aeruginosa biofilm. Microbial pathogenesis, 93, 120-125. 10.1016/j.micpath.2016.01.019

Costalat, M., Alcouffe, P., David, L., & Delair, T. (2015). Macro-hydrogels versus nanoparticles by the controlled assembly of polysaccharides. Carbohydrate polymers, 134, 541-546. 10.1016/j.carbpol.2015.07.071

Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, et al. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr. 2013;97:995–1003. 10.3945/ajcn.112.049247

Dangles, O. & Brouillard, R. (1992). A spectrophotometric method based on the anthocyanin copigmentation interaction and applied to the quantitative study of molecular complexes. Journal Chemical Society Perkin Trans, 2, 247–257. https://doi.org/10.1039/P29920000247

De Robertis, S., Bonferoni, M. C., Elviri, L., Sandri, G., Caramella, C., & Bettini, R. (2015). Advances in oral controlled drug delivery: the role of drug–polymer and interpolymer non-covalent interactions. Expert opinion on drug delivery, 12(3), 441-453. 10.1517/17425247.2015.966685

Ertan, K., Türkyılmaz, M., & Özkan, M. (2018). Effect of sweeteners on anthocyanin stability and colour properties of sour cherry and strawberry nectars during storage. Journal of food science and technology, 55(10), 4346-4355. 10.1007/s13197-018-3387-4

Esfanjani, A. F., & Jafari, S. M. (2016). Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces, 146, 532-543. https://doi.org/10.1016/j.colsurfb.2016.06.053

Espitia, P. J. P., Soares, N. D. F. F., Teófilo, R. F., dos Reis Coimbra, J. S., Vitor, D. M., Batista, R. A., & Medeiros, E. A. A. (2013). Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate polymers, 94(1), 199-208.

Fan, W., Yan, W., Xu, Z., & Ni, H. (2012). Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and surfaces B: Biointerfaces, 90, 21-27. https://doi.org/10.1016/j.colsurfb.2011.09.042

Fathi, M., Martin, A., & McClements, D. J. (2014). Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in food science & technology, 39(1), 18-39. https://doi.org/10.1016/j.tifs.2014.06.007

Feng, C., Wang, Z., Jiang, C., Kong, M., Zhou, X., Li, Y., & Chen, X. (2013). Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. International journal of pharmaceutics, 457(1), 158-167. 10.1016/j.ijpharm.2013.07.079

Fidan-Yardimci, M., Akay, S., Sharifi, F., Sevimli-Gur, C., Ongen, G., & Yesil-Celiktas, O. (2019). A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport. Food chemistry, 293, 57-65. https://doi.org/10.1016/j.foodchem.2019.04.086

Floris, A., Meloni, M. C., Lai, F., Marongiu, F., Maccioni, A. M., & Sinico, C. (2013). Cavitation effect on chitosan nanoparticle size: A possible approach to protect drugs from ultrasonic stress. Carbohydrate polymers, 94(1), 619-625. https://doi.org/10.1016/j.carbpol.2013.01.017

Furtado, G. T. F. D. S., Fideles, T. B., Cruz, R. D. C. A. L., Souza, J. W. D. L., Rodriguez Barbero, M. A., & Fook, M. V. L. (2018). Chitosan/NaF Particles Prepared Via Ionotropic Gelation: Evaluation of Particles Size and Morphology. Materials Research, 21(4). https://doi.org/10.1590/1980-5373-mr-2018-0101

Ge, J., Yue, P., Chi, J., Liang, J., & Gao, X. (2018). Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids, 74, 23-31. https://doi.org/10.1016/j.foodhyd.2017.07.029

Ge, J., Yue, X., Wang, S., Chi, J., Liang, J., Sun, Y., & Yue, P. (2019). Nanocomplexes composed of chitosan derivatives and β-Lactoglobulin as a carrier for anthocyanins: Preparation, stability and bioavailability in vitro. Food Research International, 116, 336-345. 10.1016/j.foodres.2018.08.045

Gokce, Y., Cengiz, B., Yildiz, N., Calimli, A., & Aktas, Z. (2014). Ultrasonication of chitosan nanoparticle suspension: Influence on particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 75-81. https://doi.org/10.1016/j.colsurfa.2014.08.028

Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., & Alexander, R. W. (1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circulation Research, 74(6), 1141–1148. 10.1161/01.res.74.6.1141

Gu, B., Linehan, B., & Tseng, Y. C. (2015). Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions. International journal of pharmaceutics, 491(1-2), 208-217. 10.1016/j.ijpharm.2015.06.006

Guldiken, B., Gibis, M., Boyacioglu, D., Capanoglu, E., & Weiss, J. (2018). Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food research international, 108, 491-497. 10.1016/j.foodres.2018.03.071

Guo, H., & Xia, M. (2018). Anthocyanins and diabetes regulation. In Polyphenols: Mechanisms of Action in Human Health and Disease (pp. 135-145). Academic Press. 10.1016/b978-0-12-813006-3.00012-x

Ha, C. T., Lien, N. T. H., Anh, N. D., & Lam, N. L. (2017). Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications. Journal of Electronic Materials, 46(12), 6843–6847. 10.1007/s11664-017-5743-y

Haddar, W., Ben Ticha, M., Meksi, N., & Guesmi, A. (2017). Application of anthocyanins as natural dye extracted from Brassica oleracea L. var. capitata f. rubra: dyeing studies of wool and silk fibres. Natural Product Research, 32(2), 141–148. 10.1080/14786419.2017.1342080

Hamman, J. H. (2010). Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Marine drugs, 8(4), 1305-1322. 10.3390/md8041305

He, B., Ge, J., Yue, P., Yue, X., Fu, R., Liang, J., & Gao, X. (2017). Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food chemistry, 221, 1671-1677. https://doi.org/10.1016/j.foodchem.2016.10.120

He, Z., Liu, Z., Tian, H., Hu, Y., Liu, L., Leong, K. W., & Chen, Y. (2018). Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale, 10(7), 3307-3319. https://doi.org/10.1039/C7NR08047F

He, Z., Santos, J. L., Tian, H., Huang, H., Hu, Y., Liu, L., & Mao, H. Q. (2017) Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials, 130, 28-41. https://doi.org/10.1016/j.biomaterials.2017.03.028

Isik, B. S., Altay, F., & Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food chemistry, 265, 260-273. https://doi.org/10.1016/j.foodchem.2018.05.064

Iosub, I., Kajzar, F., Makowska-Janusik, M., Meghea, A., Tane, A., & Rau, I. (2012). Electronic structure and optical properties of some anthocyanins extracted from grapes. Optical Materials, 34(10), 1644-1650. https://doi.org/10.1016/j.optmat.2012.03.020

Jafari, S. M. (2017). An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation technologies for the food and nutraceutical industries (pp. 1-34). Academic Press. 10.1016/B978-0-12-809436-5.00001-X

Jeong, D., Bae, B., Park, S., & Na, K. (2016). Reactive oxygen species responsive drug releasing nanoparticle based on chondroitin sulfate–anthocyanin nanocomplex for efficient tumor therapy. Journal of Controlled Release, 222, 78–85. 10.1016/j.jconrel.2015.12.009

Jeong, D., & Na, K. (2012). Chondroitin sulfate based nanocomplex for enhancing the stability and activity of anthocyanin. Carbohydrate Polymers, 90(1), 507–515. 10.1016/j.carbpol.2012.05.072

Jiang, T., Mao, Y., Sui, L., Yang, N., Li, S., Zhu, Z., & He, Y. (2019). Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food chemistry, 274, 460-470. https://doi.org/10.1016/j.foodchem.2018.07.141

Jonassen, H., Kjøniksen, A. L., & Hiorth, M. (2012). Effects of ionic strength on the size and compactness of chitosan nanoparticles. Colloid and Polymer Science, 290(10), 919-929. 10.1007/s00396-012-2604-3

Joye, I. J., Davidov-Pardo, G., & McClements, D. J. (2014). Nanotechnology for increased micronutrient bioavailability. Trends in food science & technology, 40(2), 168-182. https://doi.org/10.1016/j.tifs.2014.08.006

Joye, I. J., & McClements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, 19(5), 417-427. https://doi.org/10.1016/j.cocis.2014.07.002

Ju, M., Zhu, G., Huang, G., Shen, X., Zhang, Y., Jiang, L., & Sui, X. (2020). A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocolloids, 99, 105329. https://doi.org/10.1016/j.foodhyd.2019.105329

Jung, Y. K., Joo, K. S., Rho, S. J., & Kim, Y. R. (2020). pH-dependent antioxidant stability of black rice anthocyanin complexed with cycloamylose. LWT, 109474. https://doi.org/10.1016/j.lwt.2020.109474

Karaoglan, H. A., Keklik, N. M., & Isıklı, N. D. (2019). Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light. Journal of food science and technology, 56(1), 30-39. https://doi.org/10.1007/s13197-018-3434-1

Kay, C. D., Pereira-Caro, G., Ludwig, I. A., Clifford, M. N., & Crozier, A. (2017). Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annual Review of Food Science and Technology, 8, 155-180. 10.1146/annurev-food-030216-025636

Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. 10.1080/16546628.2017.1361779

Ko, A., Lee, J. S., Sop Nam, H., & Gyu Lee, H. (2017). Stabilization of black soybean anthocyanin by chitosan nanoencapsulation and copigmentation. Journal of Food Biochemistry, 41(2), e12316. https://doi.org/10.1111/jfbc.12316

Koley, T. K., Singh, S., Khemariya, P., Sarkar, A., Kaur, C., Chaurasia, S. N. S., & Naik, P. S. (2014). Evaluation of bioactive properties of Indian carrot (Daucus carota L.): A chemometric approach. Food research international, 60, 76-85.

Kumari, L., & Badwaik, H. R. (2019). Polysaccharide-based nanogels for drug and gene delivery. In Polysaccharide Carriers for Drug Delivery (pp. 497-557). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102553-6.00018-0

Kurozawa, L. E., & Hubinger, M. D. Hydrophilic food compounds encapsulation by ionic gelation. Current Opinion in Food Science, v. 15, p. 50-55, 2017. https://doi.org/10.1016/j.cofs.2017.06.004

Lalevée, G., Sudre, G., Montembault, A., Meadows, J., Malaise, S., Crépet, A., & Delair, T. (2016). Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan—Physicochemical study and structural analysis. Carbohydrate polymers, 154, 86-95. https://doi.org/10.1016/j.carbpol.2016.08.007

Lee, J. H., & Choung, M. G. (2011). Identification and characterisation of anthocyanins in the antioxidant activity-containing fraction of Liriope platyphylla fruits. Food Chemistry, 127(4), 1686-1693. https://doi.org/10.1016/j.foodchem.2011.02.037

Liang, T., Zhang, Z., & Jing, P. (2019). Black rice anthocyanins embedded in self-assembled chitosan/chondroitin sulfate nanoparticles enhance apoptosis in HCT-116 cells. Food chemistry, 301, 125280. https://doi.org/10.1016/j.foodchem.2019.125280

Luo, Y., & Wang, Q. (2014). Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. International journal of biological macromolecules, 64, 353-367. https://doi.org/10.1016/j.ijbiomac.2013.12.017

Luo, Y., Zhang, B., Cheng, W. H., & Wang, Q. (2010). Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating. Carbohydrate Polymers, 82(3), 942-951. doi : 10.1016/j.carbpol.2010.06.029

Mazza, G., & Brouillard, R. (1987). Recent developments in the stabilization of anthocyanins in food products. Food chemistry, 25(3), 207-225. https://doi.org/10.1016/0308-8146(87)90147-6

Meka, V. S., Sing, M. K., Pichika, M. R., Nali, S. R., Kolapalli, V. R., & Kesharwani, P. (2017). A comprehensive review on polyelectrolyte complexes. Drug discovery today, 22(11), 1697-1706. https://doi.org/10.1016/j.drudis.2017.06.008

Mohammed, M. A., Syeda, J., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9(4), 53. 10.3390/pharmaceutics9040053

Morais, C. A., de Rosso, V. V., Estadella, D., & Pisani, L. P. (2016). Anthocyanins as inflammatory modulators and the role of the gut microbiota. Journal of Nutritional Biochemistry, 33, 1–7. https://doi.org/10.1016/j.jnutbio.2015.11.008

Morris, G. A., Castile, J., Smith, A., Adams, G. G., & Harding, S. E. (2011). The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)–chitosan nanoparticles. Carbohydrate polymers, 84(4), 1430-1434. https://doi.org/10.1016/j.carbpol.2011.01.044

Mu, R., Hong, X., Ni, Y., Li, Y., Pang, J., Wang, Q., & Zheng, Y. (2019). Recent trends and applications of cellulose nanocrystals in food industry. Trends in Food Science & Technology, 93, 136-144. https://doi.org/10.1016/j.tifs.2019.09.013

Mueller, D., Jung, K., Winter, M., Rogoll, D., Melcher, R., Kulozik, U., Schwarz, K., & Richling, E. (2018). Encapsulation of anthocyanins from bilberries – Effects on bioavailability and intestinal accessibility in humans. Food Chemistry, 248, 217–224. 10.1016/j.foodchem.2017.12.058

Norkaew, O., Thitisut, P., Mahatheeranont, S., Pawin, B., Sookwong, P., Yodpitak, S., & Lungkaphin, A. (2019). Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food chemistry, 294, 493-502. https://doi.org/10.1016/j.foodchem.2019.05.086

Oehlke, K., Adamiuk, M., Behsnilian, D., Gräf, V., Mayer-Miebach, E., Walz, E., & Greiner, R. (2014). Potential bioavailability enhancement of bioactive compounds using food-grade engineered nanomaterials: a review of the existing evidence. Food & function, 5(7), 1341-1359. 10.1039/c3fo60067j

Paliwal, R., & Palakurthi, S. (2014). Zein in controlled drug delivery and tissue engineering. Journal of Controlled Release, 189, 108-122. https://doi.org/10.1016/j.jconrel.2014.06.036

Patil, J. S., Kamalapur, M. V., Marapur, S. C., & Kadam, D. V. (2010). Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Digest Journal of Nanomaterials and Biostructures, 5(1), 241-248.

Peixoto, F. M., Fernandes, I., Gouvêa, A. C. M., Santiago, M. C., Borguini, R. G., Mateus, N., & Ferreira, I. M. (2016). Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. Journal of functional foods, 24, 373-381. https://doi.org/10.1016/j.jff.2016.04.021

Pina, F., Melo, M. J., Laia, C. A., Parola, A. J., & Lima, J. C. (2012). Chemistry and applications of flavylium compounds: a handful of colours. Chemical Society Reviews, 41(2), 869-908. 10.1039/c1cs15126f

Pisoschi, A. M., Pop, A., Cimpeanu, C., Turcuş, V., Predoi, G., & Iordache, F. (2018). Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity-A critical view. European journal of medicinal chemistry, 157, 1326-1345. https://doi.org/10.1016/j.ejmech.2018.08.076

Pola, C. C., Moraes, A. R., Medeiros, E. A., Teófilo, R. F., Soares, N. F., & Gomes, C. L. (2019). Development and optimization of pH-responsive PLGA-chitosan nanoparticles for triggered release of antimicrobials. Food chemistry, 295, 671-679. https://doi.org/10.1016/j.foodchem.2019.05.165

Prietto, L., Pinto, V. Z., El Halal, S. L. M., de Morais, M. G., Costa, J. A. V., Lim, L. T., & Zavareze, E. D. R. (2018). Ultrafine fibers of zein and anthocyanins as natural pH indicator. Journal of the Science of Food and Agriculture, 98(7), 2735-2741. 10.1002/jsfa.8769

Pujana, M. A., Pérez-Álvarez, L., Iturbe, L. C. C., & Katime, I. (2013). Biodegradable chitosan nanogels crosslinked with genipin. Carbohydrate Polymers, 94(2), 836-842. 10.1016/j.carbpol.2013.01.082

Qian, B. J., Liu, J. H., Zhao, S. J., Cai, J. X., & Jing, P. (2017). The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Food chemistry, 228, 526-532. 10.1016/j.foodchem.2017.01.120

Ramasamy, T., Tran, T. H., Cho, H. J., Kim, J. H., Kim, Y. I., Jeon, J. Y., & Kim, J. O. (2014). Chitosan-based polyelectrolyte complexes as potential nanoparticulate carriers: physicochemical and biological characterization. Pharmaceutical research, 31(5), 1302-1314. https://doi.org/10.1007/s11095-013-1251-9

Rampino, A., Borgogna, M., Blasi, P., Bellich, B., & Cesàro, A. (2013). Chitosan nanoparticles: preparation, size evolution and stability. International journal of pharmaceutics, 455(1-2), 219-228. 10.1016/j.ijpharm.2013.07.034

Ravanfar, R., Tamaddon, A. M., Niakousari, M., & Moein, M. R. (2016). Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket–Burman and Box–Behnken designs. Food chemistry, 199, 573-580. 10.1016/j.foodchem.2015.12.061

Reis, J. F., Monteiro, V. V. S., de Souza Gomes, R., do Carmo, M. M., da Costa, G. V., Ribera, P. C., & Monteiro, M. C. (2016). Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. Journal of Translational Medicine, 14(1), 315. https://doi.org/10.1186/s12967-016-1076-5

Ren, X., Hou, T., , Q., Zhang, X., Hu, D., Xu, B., & Ma, H. (2019). Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation. Food chemistry, 279, 223-230. https://doi.org/10.1016/j.foodchem.2018.11.025

Robert, P., & Fredes, C. (2015). The encapsulation of anthocyanins from berry-type fruits. Trends in foods. Molecules, 20(4), 5875-5888. 10.3390/molecules20045875

Roobha, J. J., Saravanakumar, M., Aravindhan, K. M., & devi, P. S. (2011). The effect of light, temperature, ph on stability of anthocyanin pigments in Musa acuminata bract. Research in Plant Biology, 1(5). Retrieved from https://updatepublishing.com/journal/index.php/ripb/article/view/2597

Santos-Buelga, C., & González-Paramás, A. M. (2018). Anthocyanins. Reference Module in Food Science, 1–12. https://doi.org/10.1016/B978-0-08-100596-5.21609-0

Santos, J. L., Ren, Y., Vandermark, J., Archang, M. M., Williford, J. M., Liu, H. W., & Mao, H. Q. (2016). Continuous production of discrete plasmid DNA‐polycation nanoparticles using flash nanocomplexation. Small, 12(45), 6214-6222. 10.1002/smll.201601425

Shariatinia, Z., & Barzegari, A. (2019). Polysaccharide hydrogel films/membranes for transdermal delivery of therapeutics. In Polysaccharide Carriers for Drug Delivery (pp. 639-684). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102553-6.00022-2

Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 132, 109077. https://doi.org/10.1016/j.foodres.2020.109077

Shim, H. R., Lee, J. S., Nam, H. S., & Lee, H. G. (2016). Nanoencapsulation of synergistic combinations of acai berry concentrate to improve antioxidant stability. Food science and biotechnology, 25(6), 1597-1603. https://doi.org/10.1007/s10068-016-0246-9

Shovsky, A., Varga, I., Makuška, R., & Claesson, P. M. (2009). Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration. Langmuir, 25(11), 6113-6121. https://doi.org/10.1021/la804189w

Singh, S., Kalia, P., Meena, R. K., Mangal, M., Islam, S., Saha, S., & Tomar, B. S. (2020). Genetics and Expression Analysis of Anthocyanin Accumulation in Curd Portion of Sicilian Purple to Facilitate Biofortification of Indian Cauliflower. Frontiers in plant science, 10, 1766. https://doi.org/10.3389/fpls.2019.01766

Sipahli, S., Mohanlall, V., & Mellem, J. J. (2017). Stability and degradation kinetics of crude anthocyanin extracts from H. sabdariffa. Food Science and Technology, 37(2), 209-215. http://dx.doi.org/10.1590/1678-457x.14216

Siyawamwaya, M., Choonara, Y. E., Bijukumar, D., Kumar, P., Du Toit, L. C., & Pillay, V. (2015). A review: overview of novel polyelectrolyte complexes as prospective drug bioavailability enhancers. International Journal of Polymeric Materials and Polymeric Biomaterials, 64(18), 955-968. 10.1080/00914037.2015.1038816

Soares, N. F. F. (1998). Bitterness reduction in citrus juice through naringinase immobilized into polymer film. Ph.D. Dissertation. Cornell University, New York, 130.

Sreekumar, S., Goycoolea, F. M., Moerschbacher, B. M., & Rivera-Rodriguez, G. R. (2018). Parameters influencing the size of chitosan-TPP nano-and microparticles. Scientific reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-23064-4

Srivastava, J., & Vankar, P. S. (2010). Canna indica flower: New source of anthocyanins. Plant physiology and biochemistry, 48(12), 1015-1019. https://doi.org/10.1016/j.plaphy.2010.08.011

Stoll, L., Costa, T. M. H., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. (2015). Microencapsulation of Anthocyanins with Different Wall Materials and Its Application in Active Biodegradable Films. Food and Bioprocess Technology, 9(1), 172–181. 10.1007/s11947-015-1610-0

Stoll, L., Silva, A. M., Iahnke, A. O. e S., Costa, T. M. H., Flôres, S. H., & Rios, A. de O. (2017). Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extra-virgin olive oil during storage. Journal of Food Processing and Preservation, 41(6), e13218. 10.1111/jfpp.13218

Suket, N., Srisook, E., & Hrimpeng, K. (2014). Antimicrobial activity of the anthocyanins isolated from purple field corn (Zea mays L.) Cob against Candida spp. IOSR J Pharm Biol Sci, 9, 40-4. 10.9790/3008-09424044

Tarone, A. G., Cazarin, C. B. B., & Junior, M. R. M. (2020). Anthocyanins: New techniques and challenges in microencapsulation. Food Research International, 133, 109092. https://doi.org/10.1016/j.foodres.2020.109092

Tan, C., Celli, G. B., & Abbaspourrad, A. (2018). Copigment-polyelectrolyte complexes (PECs) composite systems for anthocyanin stabilization. Food Hydrocolloids, 81, 371-379. https://doi.org/10.1016/j.foodhyd.2018.03.011

Tan, C., Celli, G. B., Selig, M. J., & Abbaspourrad, A. (2018). Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. Food chemistry, 264, 342-349. https://doi.org/10.1016/j.foodchem.2018.05.018

Tan, C., Selig, M. J., & Abbaspourrad, A. (2018). Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation. Carbohydrate polymers, 181, 124-131. https://doi.org/10.1016/j.carbpol.2017.10.034

Terefe, N. S., Netzel, G. A., & Netzel, M. E. (2019). Copigmentation with Sinapic Acid Improves the Stability of Anthocyanins in High-Pressure-Processed Strawberry Purees. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/3138608

Thibado, S., Thornthwaite, J., Ballard, T., & Goodman, B. (2017). Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins. Molecular and Clinical Oncology, 8(2), 330-335. 10.3892/mco.2017.1520

Tong, Y., Deng, H., Kong, Y., Tan, C., Chen, J., Wan, M., & Li, L. (2020). Stability and structural characteristics of amylopectin nanoparticle-binding anthocyanins in Aronia melanocarpa. Food chemistry, 311, 125687. https://doi.org/10.1016/j.foodchem.2019.125687

Tsai, M. L., Chen, R. H., Bai, S. W., & Chen, W. Y. (2011). The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer. Carbohydrate Polymers, 84(2), 756-761. https://doi.org/10.1016/j.carbpol.2010.04.040

Vashist, A., Kaushik, A., Vashist, A., Bala, J., Nikkhah-Moshaie, R., Sagar, V., et al. (2018). Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discovery Today, 23(7), 1359–6446. https://doi.org/10.1016/j.drudis.2018.05.018

Wallace, T. C., & Giusti, M. M. (2015). Anthocyanins. Advances in Nutrition, 6(5), 620-622. https://doi.org/10.3945/an.115.009233

Wang, F., Yang, Y., Ju, X., Udenigwe, C. C., & He, R. (2018). Polyelectrolyte complex nanoparticles from chitosan and acylated rapeseed cruciferin protein for curcumin delivery. Journal of agricultural and food chemistry, 66(11), 2685-2693. 10.1021/acs.jafc.7b05083

Wang, W., Jung, J., & Zhao, Y. (2017). Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydrate polymers, 157, 1246-1253. https://doi.org/10.1016/j.carbpol.2016.11.005

Wang, H., Qian, C., & Roman, M. (2011). Effects of pH and salt concentration on the formation and properties of chitosan–cellulose nanocrystal polyelectrolyte–macroion complexes. Biomacromolecules, 12(10), 3708-3714. https://doi.org/10.1021/bm2009685

Wang, H., & Roman, M. (2011). Formation and properties of chitosan− cellulose nanocrystal polyelectrolyte− macroion complexes for drug delivery applications. Biomacromolecules, 12(5), 1585-1593. https://doi.org/10.1021/bm101584c

Wen, J., Gailani, M. A., & Yin, N. (2018). Filled hydrogel particles. Emulsion-based systems for delivery of food active compounds: formation, application, health and safety. John Wiley & Sons, Hoboken, 161-180. https://doi.org/10.1002/9781119247159.ch7

Wu, D., Ensinas, A., Verrier, B., Cuvillier, A., Champier, G., Paul, S., & Delair, T. (2017). Ternary polysaccharide complexes: Colloidal drug delivery systems stabilized in physiological media. Carbohydrate Polymers, 172, 265-274. https://doi.org/10.1016/j.carbpol.2017.05.051

Wu, D., Zhu, L., Li, Y., Zhang, X., Xu, S., Yang, G., & Delair, T. (2020). Chitosan-based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review. Carbohydrate Polymers, 116126. https://doi.org/10.1016/j.carbpol.2020.116126

Wu, S., Tao, Y., Zhang, H., & Su, Z. (2011). Preparation and characterization of water-soluble chitosan microparticles loaded with insulin using the polyelectrolyte complexation method. Journal of Nanomaterials, 2011. https://doi.org/10.1155/2011/404523

Yadav, M., Behera, K., Chang, Y. H., & Chiu, F. C. (2020). Cellulose Nanocrystal Reinforced Chitosan Based UV Barrier Composite Films for Sustainable Packaging. Polymers, 12(1), 202. https://doi.org/10.3390/polym12010202

Yan, L., Gao, S., Shui, S., Liu, S., Qu, H., Liu, C., & Zheng, L. (2018). Small interfering RNA-loaded chitosan hydrochloride/carboxymethyl chitosan nanoparticles for ultrasound-triggered release to hamper colorectal cancer growth in vitro. International Journal of Biological Macromolecules, 162, 1303-1310. https://doi.org/10.1016/j.ijbiomac.2020.06.246

Yeon, K. M., You, J., Adhikari, M. D., Hong, S. G., Lee, I., Kim, H. S., & Sajomsang, W. (2019). Enzyme-immobilized chitosan nanoparticles as environmentally friendly and highly effective antimicrobial agents. Biomacromolecules, 20(7), 2477-2485. https://doi.org/10.1021/acs.biomac.9b00152

Yousuf, B., Gul, K., Wani, A. A., & Singh, P. (2016). Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Critical reviews in food science and nutrition, 56(13), 2223-2230. https://doi.org/10.1080/10408398.2013.805316

Yuan, Y., & Huang, Y. (2019). Ionically crosslinked polyelectrolyte nanoparticle formation mechanisms: the significance of mixing. Soft Matter, 15(48), 9871-9880. https://doi.org/10.1039/C9SM01441A

Zapata, I. C., Álzate, A. F., Zapata, K., Arias, J. P., Puertas, M. A., & Rojano, B. (2019). Effect of pH, temperature and time of extraction on the antioxidant properties of Vaccinium meridionale Swartz. Journal of Berry Research, 9(1), 39-49. 10.3233/JBR-18299

Zhao, L. M., Shi, L. E., Zhang, Z. L., Chen, J. M., Shi, D. D., Yang, J., & Tang, Z. X. (2011). Preparation and application of chitosan nanoparticles and nanofibers. Brazilian Journal of Chemical Engineering, 28(3), 353-362. https://doi.org/10.1590/S0104-66322011000300001

Zhao, L., Temelli, F., & Chen, L. (2017). Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods, 34, 159-167. https://doi.org/10.1016/j.jff.2017.04.021

Descargas

Publicado

05/08/2022

Cómo citar

FLORES, R. V.; SILVA, R. R. A.; OLIVEIRA, T. V. de; OLIVEIRA, E. B. de; STRINGHETA, P. C.; SOARES, N. de F. F. Avances y desafíos recientes en nanoestructuras a base de quitosano preparadas por complejación polielectrolítica y gelatinización iónica para la estabilización de antocianinas. Research, Society and Development, [S. l.], v. 11, n. 10, p. e401111033092, 2022. DOI: 10.33448/rsd-v11i10.33092. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33092. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas