Distribution of lymphocyte subpopulations of goats experimentally infected with wild lineages VD57 and attenuated T1 of Corynebacterium pseudotuberculosis in response to secret antigens (TPP and MQD) from the attenuated lineage

Authors

DOI:

https://doi.org/10.33448/rsd-v11i11.33241

Keywords:

Corynebacterium pseudotuberculosis; Sheep; Goats; Flow cytometry.

Abstract

Caseous lymphadenitis is a chronic infectious disease of small ruminants, goats and sheep, causing great economic losses, characterized by the formation of subcutaneous granulomas and in internal organs whose etiologic agent is Corynebacterium pseudotuberculosis, Gram-positive bacillus, and facultative intracellular pathogen of phagocytes. , phylogenetically related to Mycobacterium tuberculosis. This study aimed to evaluate "in vitro" the phenotypes of subpopulations of cells of the peripheral blood leukocyte lineage of goats experimentally infected with the T1 and VD57 strains of Corynebacterium pseudotuberculosis, being the cells stimulated with secreted/excreted antigens of the T1 strain using as tool the flow cytometry technique. The expression of CD4 cells is higher in animals infected with the VD57 lineage under both TPP and MQD antigenic stimuli. The expression of CD8-labeled cells is higher in the group of animals infected with the T1 lineage for both stimuli with increasing expression over time. For the CD21 marker there was greater expression in the group of animals infected with the T1 lineage, however in the group of animals infected with the VD57 lineage there was significant expression at 60 days of infection. There was no difference in the proliferation index of TCRgd cells under the stimulus of the two antigens in the group infected with T1, while in the group infected with the VD57 lineage; the TPP antigen had a higher proliferation index at 60 days of infection. It can be observed that there were differences in the expression of the cell phenotype in peripheral blood cells of the animals infected with the T1 and VD57 strains and stimulated with the TPP and MQD secreted antigens; however, the TPP antigen proved to be the greatest inducer of cell proliferation. Both strains demonstrated significant indices in cell proliferation.

References

Alvarez, A. J., Endsley, J. J., Werling, D., & Mark Estes, D. (2009). WC1+ γδ T Cells Indirectly Regulate Chemokine Production During Mycobacterium bovis Infection in SCID‐bo Mice. Transboundary and Emerging Diseases, 56(6‐7), 275-284. https://doi.org/10.1111/j.1865-1682.2009.01081.x

Andrade; C. L. B., de Moura Costa, L. F., dos Santos, R. M., Conceição, R. R., Oliveira, L. G. F., dos Santos, A. S., & de Sá, M. D. C. A. (2022) Avaliação do crescimento bacteriano por citometria de fluxo e produção de antìgenos secretados de diferentes cepas de Corynebacterium pseudotuberculosis. In Mota, D., Silva, Clécio (Org.), Produção Científica em Ciências Biológicas (pp. 58-83). Atena. https://doi.org/10.22533/at.ed.2192230036

Araújo, C. L., Alves, J., Nogueira, W., Pereira, L. C., Gomide, A. C., Ramos, R., & Folador, A. (2019). Prediction of new vaccine targets in the core genome of Corynebacterium pseudotuberculosis through omics approaches and reverse vaccinology. Gene, 702, 36-45. https://doi.org/10.1016/j.gene.2019.03.049

Asai, K. I., Yamaguchi, T., Kuroishi, T., Komine, Y., Kai, K., Komine, K. I., & Kumagai, K. (2003). Differential gene expression of cytokine and cell surface molecules in T cell subpopulation derived from mammary gland secretion of cows. American Journal of Reproductive Immunology, 50(6), 453-462. https://doi.org/10.1046/j.8755-8920.2003.00113.x

Baird, G. J., & Fontaine, M. C. (2007). Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. Journal of comparative pathology, 137(4), 179-210. https://doi.org/10.1016/j.jcpa.2007.07.002

Bastos, B. L., Portela, R. D., Dorella, F. A., Ribeiro, D., Seyffert, N., Castro, T. L. D. P., & Azevedo, V. (2012). Corynebacterium pseudotuberculosis: immunological responses in animal models and zoonotic potential. J Clin Cell Immunol S, 4, 005. 10.4172/2155-9899.S4-005

Batey, R. G., Speed, C. M., & Kobes, C. J. (1986). Prevalence and distribution of caseous lymphadenitis in feral goats. Australian veterinary journal, 63(2), 33-36. https://doi.org/10.1111/j.1751-0813.1986.tb02916.x

Begg, D. J., & Griffin, J. F. T. (2005). Vaccination of sheep against M. paratuberculosis: immune parameters and protective efficacy. Vaccine, 23(42), 4999-5008. https://doi.org/10.1016/j.vaccine.2005.05.031

Buza, J., Kiros, T., Zerihun, A., Abraham, I., & Ameni, G. (2009). Vaccination of calves with Mycobacteria bovis Bacilli Calmete Guerin (BCG) induced rapid increase in the proportion of peripheral blood γδ T cells. Veterinary immunology and immunopathology, 130(3-4), 251-255. https://doi.org/10.1016/j.vetimm.2008.12.021

Cooper, A. M. (2009). Cell mediated immune responses in tuberculosis. Annual review of immunology, 27, 393. https://doi.org/10.1146/annurev.immunol.021908.132703

da Silva, W. M., Seyffert, N., Silva, A., & Azevedo, V. (2021). A journey through the Corynebacterium pseudotuberculosis proteome promotes insights into its functional genome. PeerJ, 9, e12456. https://doi.org/10.7717/peerj.12456

de Silva, K., Begg, D., Carter, N., Taylor, D., Di Fiore, L., & Whittington, R. (2010). The early lymphocyte proliferation response in sheep exposed to Mycobacterium avium subsp. paratuberculosis compared to infection status. Immunobiology, 215(1), 12-25. https://doi.org/10.1016/j.imbio.2009.01.014

Derrick, S. C., Yabe, I. M., Yang, A., & Morris, S. L. (2011). Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells. Vaccine, 29(16), 2902-2909. https://doi.org/10.1016/j.vaccine.2011.02.010

Fontaine, M. C., & Baird, G. J. (2008). Caseous lymphadenitis. Small Ruminant Research, 76(1-2), 42-48. https://doi.org/10.1016/j.smallrumres.2007.12.025.

Guaraldi, A. L. de M., Hirata, R., & Azevedo, V. A. de C. (2013). Corynebacterium diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis—General Aspects. Corynebacterium Diphtheriae and Related Toxigenic Species, 15–37.10.1007/978-94-007-7624-1_2

Guo, S., Bao, L., Qin, Z. F., & Shi, X. X. (2010). The CFP-10/ESAT-6 complex of Mycobacterium tuberculosis potentiates the activation of murine macrophages involvement of IFN-γ signaling. Medical microbiology and immunology, 199(2), 129-137. https://doi.org/10.1007/s00430-010-0146-1

Hasvold, H. J., Valheim, M., Berntsen, G., & Storset, A. K. (2002). In vitro responses to purified protein derivate of caprine T lymphocytes following vaccination with live strains of Mycobacterium avium subsp. paratuberculosis. Veterinary immunology and immunopathology, 90(1-2), 79-89. https://doi.org/10.1016/s0165-2427(02)00224-6

Kathaperumal, K., Kumanan, V., McDonough, S., Chen, L. H., Park, S. U., Moreira, M. A., & Chang, Y. F. (2009). Evaluation of immune responses and protective efficacy in a goat model following immunization with a coctail of recombinant antigens and a polyprotein of Mycobacterium avium subsp. paratuberculosis. Vaccine, 27(1), 123-135. https://doi.org/10.1016/j.vaccine.2008.10.019

Kaufmann, S. H. (1993). Immunity to intracellular bacteria. Annual review of immunology, 11, 129-163. https://doi.org/10.1146/annurev.iy.11.040193.001021

Lan, D. T. B., Makino, S. I., Shirahata, T., Yamada, M., & Nakane, A. (1999). Complement receptor type 3 plays an important role in development of protective immunity to primary and secondary Corynebacterium pseudotuberculosis infection in mice. Microbiology and immunology, 43(12), 1103-1106. https://doi.org/10.1111/j.1348-0421.1999.tb03367.x

Lan, D. T. B., Taniguchi, S., Makino, S. I., Shirahata, T., & Nakane, A. (1998). Role of endogenous tumor necrosis factor alpha and gamma interferon in resistance to Corynebacterium pseudotuberculosis infection in mice. Microbiology and immunology, 42(12), 863-870. https://doi.org/10.1111/j.1348-0421.1998.tb02362.x

Lim, J. H., Kim, H. J., Lee, K. S., Jo, E. K., Song, C. H., Jung, S. B., & Park, J. K. (2004). Identification of the new T-cell-stimulating antigens from Mycobacterium tuberculosis culture filtrate. FEMS microbiology letters, 232(1), 51-59. https://doi.org/10.1016/S0378-1097(04)00018-7

Moura Costa, L., JA Paule, B., M Freire, S., Nascimento, I., Schaer, R., F Regis, L., & Meyer, R. (2005). Meio Sintético Quimicamente Definido para o Cultivo de Corynebacterium pseudotuberculosis. Revista Brasileira de Saúde e Produção Animal.

Pascual, C., Lawson, P. A., Farrow, J. A., Gimenez, M. N., & Collins, M. D. (1995). Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. International journal of systematic and evolutionary microbiology, 45(4), 724-728. https://doi.org/10.1099/00207713-45-4-724

Paule, B. J. A., Azevedo, V. A. D. C., Costa, L. F. M., Freire, S. M., Regis, L. F., Vale, V. L. C., & Nascimento, R. J. M. (2004a). SDS-PAGE and Western blot analysis of somatic and extracellular antigens of Corynebacterium pseudotuberculosis.

Paule, B. J. A., Azevedo, V., Regis, L. F., Carminati, R., Bahia, C. R., Vale, V. L. C., & Meyer, R. (2003). Experimental Corynebacterium pseudotuberculosis primary infection in goats: kinetics of IgG and interferon-γ production, IgG avidity and antigen recognition by Western blotting. Veterinary immunology and immunopathology, 96(3-4), 129-139. https://doi.org/10.1016/S0165-2427(03)00146-6

Paule, B. J., Meyer, R., Moura-Costa, L. F., Bahia, R. C., Carminati, R., Regis, L. F., Vale, V. L., Freire, S. M., Nascimento, I., Schaer, R., & Azevedo, V. (2004b). Three-phase partitioning as an efficient method for extraction/concentration of immunoreactive excreted-secreted proteins of Corynebacterium pseudotuberculosis. Protein expression and purification, 34(2), 311–316. https://doi.org/10.1016/j.pep.2003.12.003

Pépin, M., Pittet, J. C., Olivier, M., & Gohin, I. (1994). Cellular composition of Corynebacterium pseudotuberculosis pyogranulomas in sheep. Journal of leukocyte biology, 56(5), 666–670. https://doi.org/10.1002/jlb.56.5.666

Pépin, M., Seow, H. F., Corner, L., Rothel, J. S., Hodgson, A. L., & Wood, P. R. (1997). Cytokine gene expression in sheep following experimental infection with various strains of Corynebacterium pseudotuberculosis differing in virulence. Veterinary research, 28(2), 149–163. https://hal.archives-ouvertes.fr/hal-00902468

Pestka, S., Krause, C. D., Sarkar, D., Walter, M. R., Shi, Y., & Fisher, P. B. (2004). Interleukin-10 and related cytokines and receptors. Annual review of immunology, 22, 929–979. https://doi.org/10.1146/annurev.immunol.22.012703.104622

Platt, R., Roth, J. A., Royer, R. L., & Thoen, C. O. (2006). Monitoring responses by use of five-color flow cytometry in subsets of peripheral T cells obtained from cattle inoculated with a killed Mycobacterium avium subsp paratuberculosis vaccine. American journal of veterinary research, 67(12), 2050–2058. https://doi.org/10.2460/ajvr.67.12.2050

Platt, R., Thoen, C. O., Stalberger, R. J., Chiang, Y. W., & Roth, J. A. (2010). Evaluation of the cell-mediated immune response to reduced doses of Mycobacterium avium ssp. paratuberculosis vaccine in cattle. Veterinary immunology and immunopathology, 136(1-2), 122–126. https://doi.org/10.1016/j.vetimm.2010.02.003

Raynal, J. T., Bastos, B. L., Vilas-Boas, P. C. B., Sousa, T. D. J., Costa-Silva, M., De Sá, M. D. C. A., Portela, R. W., Moura-Costa, L. F., Azevedo, V., Meyer, R. (2018). Identification of membrane-associated proteins with pathogenic potential expressed by Corynebacterium pseudotuberculosis grown in animal serum. BMC Research Notes, 11, 73,. https://doi.org/10.1186/s13104-018-3180-5.

Rebouças, M. F., Portela, R. W., Lima, D. D., Loureiro, D., Bastos, B. L., Moura-Costa, L. F., & Meyer, R. (2011). Corynebacterium pseudotuberculosis secreted antigen-induced specific gamma-interferon production by peripheral blood leukocytes: potential diagnostic marker for caseous lymphadenitis in sheep and goats. Journal of veterinary diagnostic investigation, 23(2), 213-220. https://doi.org/10.1177/104063871102300204

Ribeiro, O. C., Silva, J. A. H., & Pereira filho, M. (1988a) Incidência da linfadenite caseosa no semi-árido baiano. Revista Brasileira de Medicina Veterinária, 10(2), 23-24.

Rodrigues, G., Vale, V. L. C., Nascimento, A. B., Nascimento, A. B., da Costa Silva, M., Raynal, J. T., & Meyer, R. (2018). Aspectos da resposta imune em ovinos experimentalmente co-infectados com Corynebacterium pseudotuberculosis e Haemonchus contortus. Pubvet, 12, 172. https://doi.org/10.22256/pubvet.v12n5a99.1-11

Sá, M. D. C. A., Rocha Filho, J. T. R., Rosa, D. S., de Sá Oliveira, S. A., Freire, D. P., Alcantara, M. E., ... & Meyer, R. (2018). Linfadenite caseosa em caprinos e ovinos: Revisão. Pubvet, 12, 133. https://doi.org/10.31533/pubvet.v12n11a202.1-13

Sampaio, G. P., Vale, V. L. C., de Moura Costa, L. F., Fraga, R. E., de Melo Santos, H. H., de Sá, M. D. C. A., & Nascimento, R. J. M. (2019). Padronização de técnicas por citometria de fluxo para avaliar Corynebacterium pseudotuberculosise células fagocitárias murinas. Pubvet, 13, 150. https://doi.org/10.31533/pubvet.v13n11a443.1-9

Saunders, B. M., Frank, A. A., Cooper, A. M., & Orme, I. M. (1998). Role of gamma delta T cells in immunopathology of pulmonary Mycobacterium avium infection in mice. Infection and immunity, 66(11), 5508–5514. https://doi.org/10.1128/IAI.66.11.5508-5514.1998.

Seder, R. A., Darrah, P. A., & Roederer, M. (2008). T-cell quality in memory and protection: implications for vaccine design. Nature reviews. Immunology, 8(4), 247–258. https://doi.org/10.1038/nri2274

Tanaka, S., Sato, M., Onitsuka, T., Kamata, H., & Yokomizo, Y. (2005). Inflammatory cytokine gene expression in different types of granulomatous lesions during asymptomatic stages of bovine paratuberculosis. Veterinary pathology, 42(5), 579–588. https://doi.org/10.1354/vp.42-5-579

Vale, V., Freire, S., Ribeiro, M., Regis, L., Bahia, R., Carminati, R., Paule, B. J. A., Nascimento, I., & Meyer, R. (2003). Reconhecimento de antígenos por anticorpos de caprinos naturalmente infectados ou imunizados contra Corynebacterium pseudotuberculosis. Revista De Ciências Médicas E Biológicas, 2(2), 192–200. https://doi.org/10.9771/cmbio.v2i2.4286

Vaz, A. J., Takei, K., & Bueno, E. C. (2007). Imunoensaios: fundamentos e aplicações. Rio de Janeiro: Guanabara Koogan.

Walker, J., Jackson, H., Brandon, M. R., & Meeusen, E. (1991). Lymphocyte subpopulations in pyogranulomas of caseous lymphadenitis. Clinical and experimental immunology, 86(1), 13–18. https://doi.org/10.1111/j.1365-2249.1991.tb05766.x

Yaacob, M. F., Murata, A., Nor, N. H. M., Jesse, F. F. A., & Yahya, M. F. Z. R. (2021). Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. Journal of King Saud University-Science, 33(1), 101225. https://doi.org/10.1016/j.jksus.2020.10.022

Zaki, M. M. (1976). Relation between the toxogenicity and pyogenicity of Corynebacterium ovis in experimentally infected mice. Research in veterinary science, 20(2), 197–200.

Published

20/08/2022

How to Cite

OLIVEIRA, I. B. de .; VALE, V.; SILVA, M. da C. .; MOURA-COSTA, L.; SOUZA, A. P. de .; SANTOS, H. A. dos .; MARQUES, A. S. .; RAYNAL FILHO, J. T. .; TRINDADE, S. C. .; MEYER, R. Distribution of lymphocyte subpopulations of goats experimentally infected with wild lineages VD57 and attenuated T1 of Corynebacterium pseudotuberculosis in response to secret antigens (TPP and MQD) from the attenuated lineage. Research, Society and Development, [S. l.], v. 11, n. 11, p. e206111133241, 2022. DOI: 10.33448/rsd-v11i11.33241. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33241. Acesso em: 14 nov. 2024.

Issue

Section

Health Sciences