Forensic markers for revealing bloody fingerprints: a brief review
DOI:
https://doi.org/10.33448/rsd-v11i11.33371Keywords:
Luminescent materials; Forensic sciences; Fingerprint with blood.Abstract
The development of luminescent materials has been extremely relevant in the field of forensic science, due to the significant contributions to improving latent fingerprint development, image quality, and the detection of numerous traces at crime scenes. In this sense, this article aims to review the methods used and the materials with promising luminescent properties for application in forensic markers to reveal fingerprints with blood on different surfaces. In addition, we will analyze the development of new technologies and the optimization of existing methods to find better solutions to the issues that criminal experts face during a forensic investigation, such as improving factors such as toxicity, sensitivity, surface, and material efficiency. and the development methods, using approaches based on fluorescent materials such as nanoparticles doped with rare earth, 1,8-diazafluoren-9-one, acid dyes, and ninhydrin. Therefore, it was found that more research is needed to better understand the reaction mechanism involved in these materials, as well as the development of new efficient materials, with low toxicity and more sensitivity for processing latent fingerprints on different surfaces.
References
Anwar, M. U., Tandon, S. S., Dawe, L. N., Habib, F., Murugesu, M., & Thompson, L. K. (2012). Lanthanide complexes of tritopic bis (hydrazone) ligands: single-molecule magnet behavior in a linear DyIII3 complex. Inorganic chemistry, 51( 2), 1028–1034.
Ayhan, M. M., Singh, A., Jeanneau, E., Ahsen, V., Zyss, J., Ledouz-Rak, I., Gürek, A. G., Hirel, C., Bretonnière, Y., & Andraud. C 2014). ABAB homoleptic bis (phthalocyaninato) lanthanide (III) complexes: original octupolar design leading to giant quadratic hyperpolarizability. Inorganic chemistry, 53(9), 359–4370.
Balsan, J. D., Rosa, B. N., Pereira, C. M. P., & Santos, C. M. M. (2019). Desenvolvimento de metodologia de revelação de impressão digital latente com chalconas. Química Nova, 42, 845–850.
Barni, F., Lewis, S. W., Berti, A., Miskelly, G. M., & Lago, G. (2007). Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta, 72(3), 896–913.
Bécue, A., Eldridger, H., & Champod, C. (2020). Interpol review of fingermarks and other body impressions 2016–2019. Forensic Science International: Synergy, 2, 442-480.
Bécue, A., Moret, S., Champod, C., & Margot, P. (2009). Use of quantum dots in aqueous solution to detect blood fingermarks on non-porous surfaces. Forensic science international, 191(1), 36–41.
Bhatia, T. (2021). Novel nanomaterials in forensic investigations: A review. Materials Today: Proceedings, 50(5), 1071-1079.
Binnemans, K. (2009). Lanthanide-based luminescent hybrid materials. Chemical reviews, 109(9), 4283–4374.
Bleay, S. M., Croxton, R. S., & Puit, M. (2018). Fingerprint development techniques: theory and application. Wiley.
Cadd, S., Li, B., Beveridge, P., William, T. O., Campbell, A., & Islam, M. (2016). A comparison of visible wavelength reflectance hyperspectral imaging and Acid Black 1 for the detection and identification of blood stained fingerprints. Science & Justice, 56(4), 247–255.
Chemla, D. S. (2012). Nonlinear optical properties of organic molecules and crystals. Elsevier Science.
Chen, L., Chen, M., Zhou, Y., Ye, C., & Liu, R. (2021). NIR Photosensitizer for Two-Photon Fluorescent Imaging and Photodynamic Therapy of Tumor. Frontiers in Chemistry, 9, 1–8.
Cui, Y., Yue, Y., Qian, G., & Chen, B. (2012). Luminescent functional metal–organic frameworks. Chemical reviews, 112(2), 1126–1162.
Dalal, A., Nehra, K., Hooda, A., Singh, S., Bhagwan, S., Singh, D., & Kumar, S. (2022). 2, 2′-Bipyridine based fluorinated β-Diketonate Eu (III) complexes as red emitter for display applications. Inorganic Chemistry Communications, 140, 109399.
Dang, S., Zhang, J. -H., Sun, Z.-M., & Zhang G, H. (2012). Luminescent lanthanide metal–organic frameworks with a large SHG response. Chemical Communications, 48(90), 11139–11141.
Darshan, G. P., Premkumar, H. B., Nagabhushana, H., Sharma, S. C., Prasad, B. D., & Prashantha, S. C. (2016). Neodymium doped yttrium aluminate synthesis and optical properties–A blue light emitting nanophosphor and its use in advanced forensic analysis. Dyes and Pigments, 134, 227–233.
Datta, A. K., Lee, H. C., Ramotowski, R., & Gaensslen, R. E. (2001). Advances in fingerprint technology. CRC press.
Ferreira, R. A. S., André, P. S., & Carlos, L. D. (2010). Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks. Optical Materials, 32(11), 1397–1409.
Ferreira, R. G., Paula, R. B. A., Okuma, A. A., & Ferreira, L. M. C. (2021). Fingerprint Development Techniques: A Review. Revista Virtual Quimica, 13(6), 1278-1302.
Firmino, E., Oliveira, L. S., Martins, F. C. B., S Filho, J. C., Barbosa, H. P., Andrade, A. A., Rezende, T. K. L, Lima, R. C., Santos, M. A. C., & Góes, M. S. (2021). Eu3+-doped SiO2–Y2O3 containing Sr2+ for application as fingerprinting detector. Optical Materials, 114, 111018.
Garg, R. K., Kumari, H., & Kaur, R. (2011). A new technique for visualization of latent fingerprints on various surfaces using powder from turmeric: a rhizomatous herbaceous plant (Curcuma longa). Egyptian Journal of Forensic Sciences, 1(1), 53–57.
Gayathri, P., Subramaniyan, S. B., Veerappan, A., Pannipara, M., Al-Sehemi, A. G., Moon, D., & Anthony, S. P. (2021). Knotting Two Donor− π-Acceptor AIEgens Using a Nonconjugated Linker: Tunable and Switchable Fluorescence and Fingerprinting and Live Cell Imaging Applications. Crystal Growth & Design, 22(1).
Hannachi, D., Haroun, M. F., Khirreddine, A., & Chermette, H. (2019). Optical and nonlinear optical properties of Ln (Tp) 2, where Ln= La,…, Lu and Tp= tris (pyrazolyl) borate: a DFT+ TD-DFT study. New Journal of Chemistry, 43(36) 14377–14389.
Hazarika, P., & Russell, D. A. (2012). Advances in fingerprint analysis. Angewandte Chemie International Edition, 51(15), 3524–3531.
Júnior, J. C. A., Santos, G. L., Colaço, M. V., Barroso, R. C., Ferreira, F. F., Santos, M. V., Campos, N. R., Marinho, M. V., Jesus, L. T., & Freire, R. O. (2020). New EuIII Pyromellitic Metal–Organic Framework of Intense Red-Orange Luminescence and High Thermal Stability for Marking in Gunshot Residues. The Journal of Physical Chemistry C, 124(18), 9996–10006.
Li, B.-Y., Zhang, X.-L., Zhang, L.-Y., Wang, T.-T., Li, L., Wang, C.-G., & Su, Z.-M. (2016). NIR-responsive NaYF4: Yb, Er, Gd fluorescent upconversion nanorods for the highly sensitive detection of blood fingerprints. Dyes and Pigments, 134, 178–185.
Liu, Z., Yan, X., Li, L., & Wu, G. (2017). Theoretical insight into the substituent effects on linear and nonlinear optical properties of azobenzene‐based chromophores. Journal of Physical Organic Chemistry, 30(6), 3631.
Luedeke, M., Miller, E., & Sprague, J. E. (2016). The effects of Bluestar® and luminol when used in conjunction with tetramethylbenzidine or phenolphthalein. Forensic science international, 262, 156–159.
Martin-Ramos, P., & Ramos-Silva, M.(2018). Lanthanide-based multifunctional materials: from OLEDs to SIMs (1ª ed.). Elsevier.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269.
Moret, S., Bégue, A., & Champod, C. (2013). Cadmium-free quantum dots in aqueous solution: Potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on non-porous surfaces. Forensic science international, 224(1), 101–110.
Naik, E. I., Naik, H. S. B., Swamy, B. E. K., Viswanath, R., Gowda, I. K. S., Prabhakara, M. C., & Chetankumar, K. (2021). Influence of Cu doping on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chemical Data Collections, 33,100671.
Nguyen, T. N., Eliseeva, S. V., Gladysiak, A., Petoud, S., & Stylianou, K. C. (2020). Design of lanthanide-based metal–organic frameworks with enhanced near-infrared emission. Journal of Materials Chemistry A, 8(20), 10188–10192.
Pacheco, B. S., Silva, C. C., Rosa, B. N., Mariotti, K. C., Nicolodi, C., Poletti, T., Segatto, N. V., Collares, T., Seixas, F. K., & Paniz, O. (2021). Monofunctional curcumin analogues: evaluation of green and safe developers of latent fingerprints. Chemical Papers, 75(7), 3119–3129.
Pandiyan, S., Aumugam, L., Srirengan, S. P., Pitchan, R., Sevugan, P., Kannan, K., Pitchan, G., Hegde, T. A., & Gandhirajan, V. (2020). Biocompatible carbon quantum dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications. ACS omega, 5(47), 30363–30372.
Parola, S., Julián-López, B., Carlos, L. D., & Sanchez, C. (2016). Optical properties of hybrid organic‐inorganic materials and their applications. Advanced Functional Materials, 26(36), 6506–6544.
Prasad, V., Lukose, S., Agarwal, P., & Prasad, L. (2020). Role of nanomaterials for forensic investigation and latent fingerprinting—a review. Journal of forensic sciences, 65(1), 26–36.
Rawtani, D., Tharmavaram, M., Pandey, G., & Hussain, C. M. (2019). Functionalized nanomaterial for forensic sample analysis. TrAC Trends in Analytical Chemistry, 120, 115661.
Rocha, J., Carlos, L. D., Paz, F. A. A., & Ananias, D. (2011). Luminescent multifunctional lanthanides-based metal–organic frameworks. Chemical Society Reviews, 40(2), 926–940.
Safdar, M., Ghazy, A., Lastusaari, M., & Karppinen, M. (2020). Lanthanide-based inorganic–organic hybrid materials for photon-upconversion. Journal of Materials Chemistry C, 8(21), 6946–6965.
Sampaio, R. F., & Mancini, M. C. (2007). Estudos de revisão sistemática: um guia para síntese criteriosa da evidência científica. Brazilian Journal of Physical Therapy, 11, 83-89.
Silva, R. R., Agustini, B. C., Silva, A. L. L., & Frigeri, H. R. (2012). Luminol in the forensic science. Journal of Biotechnology and Biodiversity, 3(4), 172–177.
Sobral, G. A., Gomes, M. A., Macedo, Z. S., Alencar, M., & Novais, S. M. V. (2016). Synthesis and characterization of multicolour fluorescent nanoparticles for latent fingerprint detection. Bulletin of Materials Science, 39(6), 1565–1568.
Sushma, K. C., Kumar, S., Nagaraju, G., Aarti, D. P., Reddy, M. M., Rudresha, M. S., & Basavaraj, R. B. (2022). Color tunable SrZrO3: Sm3+ nanopowders with satisfactory photoluminescent, band engineering properties for warm white LEDs and advanced forensic applications. Journal of Molecular Structure, 1254, 132302.
Swati, G., Bihnoi, S., Singh, P., Lohia, N., Jaiswal, V. V., Dalai, M. K., & Haranath, D. (2018). Chemistry of extracting high-contrast invisible fingerprints from transparent and colored substrates using a novel phosphorescent label. Analytical Methods, 10(3), 308–313.
Taboukhat, S., Kichou, N., Fillaut, J.-L., Alévêque, O., Waszkowska, K., Zawadzka, A., El-Ghayoury, A., Migalska-Zalas, A., & Sahraoui, B. (2020). Transition metals induce control of enhanced NLO properties of functionalized organometallic complexes under laser modulations. Scientific reports, 10(1), 1–15.
Tancrez, N., Feuvrie, C., Ledoux, I., Zyss, J., Toupet, L., Bozec, H. L., & Maury, O. (2005). Lanthanide complexes for second order nonlinear optics: evidence for the direct contribution of f electrons to the quadratic hyperpolarizability. Journal of the American Chemical Society, 127(39), 13474–13475.
Taydakov, I. V., Zaitsev, B. E., Krasnoselskiy, S. S., & Starikova, Z. A. (2011). Synthesis, X-ray structure and luminescent properties of Sm3+ ternary complex with novel heterocyclic β-diketone and 1, 10-phenanthroline (Phen). Journal of rare earths, 29(8). 719–722.
Teo, K. Y., Tiong, M. H., Wee, H. Y., Jasin, N., Liu, Z.-Q., Shiu, M. Y., Tang, J. Y., Tsai, J.-K., Rahamathullah, R., & Khairul, W. M. (2017). The influence of the push-pull effect and a π-conjugated system in conversion efficiency of bis-chalcone compounds in a dye sensitized solar cell. Journal of Molecular Structure, 1143, 42–48.
Tobin, G., Comby, S., Zhu, N., Clérac, R., Gunnlaugsson, T., & Schimitt, W. (2015). Towards multifunctional lanthanide-based metal–organic frameworks. Chemical Communications, 51(68), 13313–13316.
Vivas, M. G., Barboza, C. A., Germino, J. C., Fonseca, R. D., Silva, D. L., Vazquez, P. A. M., Atvars, T. D. Z., Mendonça C. R., & Boni, L. (2020). Molecular Structure–Optical Property Relationship of Salicylidene Derivatives: A Study on the First-Order Hyperpolarizability. The Journal of Physical Chemistry A, 125(1), 99–105.
Wang, M., Li, M., Yu, A., Wu, J., & Mao, C. (2015). Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints. ACS applied materials & interfaces, 7(51), 28110–28115.
Wang, M., Li, M., Yu, A., Zhu, Y., Yang, M., & Mao, C. (2017). Fluorescent nanomaterials for the development of latent fingerprints in forensic sciences. Advanced functional materials, 27(14) 1606243.
Wu, J., Wilson, B. A., Smith JR, D. W., & Nielsen, S. O. (2014). Towards an understanding of structure-nonlinearity relationships in triarylamine-based push-pull electro-optic chromophores: the influence of substituent and molecular conformation on molecular hyperpolarizabilities. Journal of Materials Chemistry C, 2(14), 2591–2599.
Xu, H., Chen, R., Sun, Q., Lai, W., Su, Q., Huang, W., & Liu, X. (2014). Recent progress in metal–organic complexes for optoelectronic applications. Chemical Society Reviews, 43(10), 3259–3302.
Yamashita, B., & French, M.(2011). Latent print development. The fingerprint sourcebook, 1, 155–222.
Yan, B. (2017). Lanthanide-functionalized metal–organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Accounts of chemical research, 50(11), 2789–2798.
Yan, Y., Zhang, J., Yi, S., Liu, L., & Huang, C. (2021). Lighting up forensic science by aggregation-induced emission: A review. Analytica Chimica Acta, 1155, 238119.
Yang, X., Shao, Z., Zhao, Y., Xie, Q., Meng, X., Song, Y., & Hou, H. (2020). Control of third-order nonlinear optical properties by coordination metal change based on a series of metal organic chains. Polyhedron, 185, 114598.
Ye, H. Q., Li, Z., Peng, Y., Wang, C. C., Li, T. Y., Zheng, Y. X., Sapelkin, A., Adamopuoulos, G., Hernández, I., & Wyatt, P. B. (2014). Organo-erbium systems for optical amplification at telecommunications wavelengths. Nature materials, 13(4), 382–386.
Younis, S. A., Bhardwaj, N., Bhardwaj, S. K., Kim, K.-H., & Deep, A. (2021). Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coordination Chemistry Reviews, 429, 213620.
Zhang S., Yin, W., Yang, Z., Yang, Y., Li, Z., Zhang, S., Zhang, B., Dong, F., Lv, J., & Han, B. (2021). Functional Copolymers Married with Lanthanide (III) Ions: A Win-Win Pathway to Fabricate Rare Earth Fluorescent Materials with Multiple Applications. ACS Applied Materials & Interfaces, 13(4), 5539–5550.
Zhao, P., Tofighi, S., O’Donnell, R. M., Shi, J., Bondar, M. V., Hagan, D. J., & Stryland, E. W. V. (2018). Dual Emissive Multinuclear Iridium (III) Complexes in Solutions: Linear Photophysical Properties, Two-Photon Absorption Spectra, and Photostability. The Journal of Physical Chemistry C, 122(12), 6786–6793.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Raiane Sodré de Araújo; Gilvago Antônio Barbosa de Souza; Debora Albuquerque Vieira; Cindy Stella Fernandes; Fernanda Carla Lima Ferreira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.