Lipase from Fusarium solani: optimization of culture conditions, biochemical properties, and production




Lipase; Otimização; Hidrólise; Esterificação; Fusarium solani.


A Plackett-Burman factorial design with 15 experiments was conducted to evaluate the influence of seven factors on lipases production by Fusarium solani. The factors investigated were peptone, tryptone, yeast extract, calcium chloride, potassium phosphate, magnesium sulfate, and copper sulphate. Five fixed variables (cotton oil, pH, temperature, agitation, and time) were maintained and as a response to the enzymatic activity. The concentration of tryptone, calcium chloride, and magnesium sulphate had a significant effect (p < 0.10) on lipase production and was studied consecutively through a complete DCCR (central rotational compound design), to optimize lipase production of the fungi F. solani. After optimization using DCCR, maximum lipolytic activities of 24.84 U/ml were obtained with the use of 10 g.L-1 tryptone, 3.50 g.L-1 calcium chloride and 0.50 g.L-1 magnesium sulfate, 1 g.L-1 potassium phosphate and 1% soybean oil. The statistical model showed a correlation of 85.67% with the experimental data. The biochemical characterization of lipase showed that the enzyme has a better performance at pH 7 at a temperature of 40 °C, where the statistical model had a correlation of 94.15% with the experimental data. In this way, lipases produced by F. solani have potential for application and use in biodiesel production.


Almeida, A.F.; Tornisielo, S.M.T. & Carmona, E.C. (2013). Influence of carbon and nitrogen sources on lipase production by a newly isolated Candida viswanathii strain. Annals of Microbiology,63(4), 1225-1234. DOI 10.1007/s13213-012-0580-y

Almeida, A. F.; Terrasan, C. R. F.; Terrone, C. C.; Tauk-Tornisielo, S. M. & Carmona, E. C. (2018). Biochemical properties of free and immobilized Candida viswanathii lipase on octyl-agarose support: Hydrolysis of triacylglycerol and soy lecithin. Process Biochemistry 65 71–80.

Berovic, M.; Habijanic, J.; Zore, I.; Wraber, B.; Hodzar, D.; Boh, B & Pohleven, F. (2003). Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides. Journal of Biotechnology. 103 77-86.

Box, G. E. P.; Hunter, W. G. & Hunter, J. S. (1978). Statistics for experimenters: an introduction to design, data analysis, and model building. NewYork: John Wiley & Sons.

Burkert, J. F. M.; Maugeri, F.& Rodrigues, M. I. (2004). Optimization ofextracellular lipase production by Geotrichum sp. using factorial design. Bioresource Technology; 91:77–84.

Benjamin, S. & Pandey, A. (2001) Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation. Brazil Arch Biol Technol 44:213–221.

Colla, L. M.; Primaz, A. L.; Benedetti, S.; Loss, R. A.; Lima, M. de.; Reinehr, C. O.; Bertolin, T. E. & Costa, J. A. V. (2016). Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi. Braz. J. Microbiol. vol.47 no.2, 461-467. São Paulo Apr./June.

Coradi, G.V.; Visitacão, V. L. da.; Lima, E. A. de.; Saito, L. Y. T.; Palmieri, D. A.; Takita, M. A.; Neto, P. de O. & Lima, V. M. G. (2013). Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Annals of Microbiology; 63:533–540.

Dandavate, V.; Jinjala, J.; Keharia, H. & Madamwar, D. (2009). Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis, Bioresour. Technol. 100 q3374–3381.

Dheeman, D. S.; Antony-Babub, S.; Frías, J. M. & Henehan, G. T. M. (2011). Purification and characterization of an extracellular lipase from a novel strain Penicillium sp. DS-39 (DSM 23773). Journal of Molecular Catalysis B: Enzymatic Volume 72, Issues 3–4, pp. 256-262.

Fan, T.; Hu, J.; Fu, L. & Zhang, L. (2015) Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology. Carbohyd. Polym. 115, 701-706.

Ghamgui, H.; Miled, N.; Karra-Chaâbouni, M. & Gargouri, Y. (2007). Immobilization studies and biochemical properties of free and immobilized Rhizopus oryzae lipase onto CaCO3: A comparative study. Biochem. Eng. J. 37 34–41.

Haack, M. B.; Olsson, L.; Hansen, K. & Lantz, A. E. (2006). Change in hyphal morphology of Aspergillus oryzae during fed-batch cultivation. Appl Microbiol Biotechnol. 70: 482-487.

Hiol, A.; Jonzo MD.; Rugani, N.; Druet, D.; Sarda, L. & Comeau, L. C. (2000). Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme Microb Tech. 26: 421-430.

Jinaporn Wongwatanapaiboon, Waraporn Malilas, Chalermchai Ruangchainikom, Gamgarn Thummadetsak, Suphang Chulalaksananukul, Alain Marty & Warawut Chulalaksananukul.(2016).Overexpression of Fusarium solani lipase in Pichia pastoris and its application in lipid degradation, Biotechnology & Biotechnological Equipment, 30:5, pp.885-893, DOI: 10.1080/13102818.2016.1202779

Lima V.M.G.; Krieger, N.; Mitchell, D. A. & Fontana, J. D. (2004) Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochemical Engineering Journal. 18 65–71.

Kaushik, R.; Saran, S.; Isar, J. & Saxena, R. K. (2006). Statistical optimizationof medium components and growth conditions by responsesurface methodology to enhance lipase production by Aspergillus carneus. J Mol Catal B: Enzym. 40: 121–126.

Kamini, N. R. & Mala, J. G. S.; Puvanakrishnan, R. (1998) Lipase production from Aspergillus niger by solid-state fermentation using gingelly oil cake. Process Biochem. 33:505–511.

Kempka, A. P.; Lipke, N. L.; Pinheiro, T. da L. F.; Menoncin, S.; Treichel, H.; Freire, D. M. G.; Luccio, M. D. & Oliveira, D. de. (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess Biosyst. Eng 31: 119.

Maciel, V. F. A.; Pacheco, T. F. & Gonçalves, S. B. (2010). Padronização do uso de corante rodamina B para avaliação de atividade lipolítica em estirpes fúngicas. Embrapa. Comunicado Técnico n. 05.

Messias, J. M.; Costa, B. Z. da.; Lima, V. M. G. de.; Giese, E. C.; Dekker, R. F. H. & Barbosa, A. de M. (2011). Microbial lipases: Production, properties and biotechnological applications. Semana: Ciências Exatas e Tecnológicas, Londrina, v. 32, n. 2, p. 213-234. DOI: 10.5433/1679-0375.

Muralidhar, R. V.; Chirumamila, R. R.; Marchant, R. & Nigam, P. (2001). A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal. Volume 9, Issue 1, November, Pages 17-23.

Ozen, A.; Colak, A.; Dincer, B. & Guner, S. A. (2004). diphenolase from persimmon fruits (Diospyros kaki L., Ebenaceae). Food Chem. 85: 431-437,

Park, E. Y.; Sato, M.; Kojima, S. (2006). Fatty acid methyl ester production using lipase-immobilizing silica particles with different particle sizes and different specific surface areas. Enzyme Microb Technol.; 39:889–896.11.

Pastore, G. M.; Costa, V. S. R. da. & Koblitz, M. G. B. (2003). Production, partial purification and biochemical characterization of a novell Rhizopus sp. strain lipase. Ciênc Tecnol Alimentos. 23: 135–140.

Pera, L. M.; Romero, C. M.; Baigori, M. D. & Castro, G. R. (2006). Catalytic Properties of Lipase Extracts from Aspergillus niger. Food Technology and Biotechnology, v. 44, n. 2, p. 247–252,.

Protimiza Experimental Design: Software de Planejamento Experimental e Otimização de Processos. Versão única; 2014.

Rajendran, A.; Palanisamy, A. & Thangavelu, V. (2008). Evaluation ofmedium components by Plackett–Burman statistical designfor lipase production by Candida rugosa and kinetic modeling. Chin J Biotechnol.; 24:436–444. ISSN 1000-3061.

Reshma, M. V.; Saritha, S. S.; Balachandran, C. & Arumughan, C. (2008). Lipase catalyzed interesterification of palm stearin and rice bran oil blends for preparation of zero trans shortening with bioactive phytochemicals. Bioresour Technol.;99:5011–5019.

Rodrigues, M. I. & Iemma, A. F. (2014). Experimental design and process optimization. New York: CRC Press.

Salihu, A.; Alam, M. D. Z.; Abdulkarim, M. I. & Salleh, H. M. (2011). Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design. Journal of Molecular Catalysis B: Enzymatic. Volume 69, Issues 1–2, pp. 66-73.

Sangster, J. (1989). Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. 18 (3) 1111–1227.

Shu, C.; Xu, C. & Lin, G. (2006). Purification and partial characterization of a lipase from Antrodia cinnamomea. Process Biochem. 41:734–738.

Wang, D.; Xu, Y. & Shan, T. (2008). Effects of oils and oil-relatedsubstrates on the synthetic activity of membrane-boundlipase from Rhizopus chinensis and optimization of the lipasefermentation media. Biochem Eng J. 41:30–37.

Ülker, S.; Ozel, A.; Colak, A. & Karaoğlu, Ş. A. (2010) Isolation, production and characterization of an extracellular lipase from Trichoderma harzianum isolated from soil. Turk. J. Biol. 35, 543-550. doi:10.3906/biy-1004-107




How to Cite

MENDES, D. B.; SILVA , F. F. da .; GUARDA, P. M.; ALMEIDA, A. . F. de; GUARDA , E. . A. Lipase from Fusarium solani: optimization of culture conditions, biochemical properties, and production. Research, Society and Development, [S. l.], v. 11, n. 11, p. e191111133447, 2022. DOI: 10.33448/rsd-v11i11.33447. Disponível em: Acesso em: 6 oct. 2022.



Agrarian and Biological Sciences