Lipase de Fusarium solani: otimização das condições de cultivo, propriedades bioquímicas e produção

Autores

DOI:

https://doi.org/10.33448/rsd-v11i11.33447

Palavras-chave:

Lipase; Optimization; Hydrolysis; Esterification; Fusarium solani.

Resumo

Um planejamento fatorial Plackett-Burman com 15 experimentos foi conduzido para avaliar a influência de sete fatores na produção de lipases por Fusarium solani. Os fatores investigados foram peptona, triptona, extrato de levedura, cloreto de cálcio, fosfato de potássio, sulfato de magnésio e sulfato de cobre. Cinco variáveis ​​fixas (óleo de algodão, pH, temperatura, agitação e tempo) foram mantidas e como resposta à atividade enzimática. A concentração de triptona, cloreto de cálcio e sulfato de magnésio teve efeito significativo (p < 0,10) na produção de lipase e foi estudada consecutivamente através de um DCCR completo (delineamento de composto rotacional central), para otimizar a produção de lipase do fungo F. solani. Após otimização com DCCR, atividades lipolíticas máximas de 24,84 U/ml foram obtidas com o uso de 10 g.L-1 de triptona, 3,50 g.L-1 de cloreto de cálcio e 0,50 g.L-1 de sulfato de magnésio, 1 g.L-1 de fosfato de potássio e 1% de óleo de soja . O modelo estatístico apresentou uma correlação de 85,67% com os dados experimentais. A caracterização bioquímica da lipase mostrou que a enzima tem um melhor desempenho em pH 7 na temperatura de 40 °C, onde o modelo estatístico teve uma correlação de 94,15% com os dados experimentais. Desta forma, as lipases produzidas por F. solani apresentam potencial para aplicação e uso na produção de biodiesel.

Referências

Almeida, A.F.; Tornisielo, S.M.T. & Carmona, E.C. (2013). Influence of carbon and nitrogen sources on lipase production by a newly isolated Candida viswanathii strain. Annals of Microbiology,63(4), 1225-1234. DOI 10.1007/s13213-012-0580-y

Almeida, A. F.; Terrasan, C. R. F.; Terrone, C. C.; Tauk-Tornisielo, S. M. & Carmona, E. C. (2018). Biochemical properties of free and immobilized Candida viswanathii lipase on octyl-agarose support: Hydrolysis of triacylglycerol and soy lecithin. Process Biochemistry 65 71–80. http://dx.doi.org/10.1016/j.procbio.2017.10.019

Berovic, M.; Habijanic, J.; Zore, I.; Wraber, B.; Hodzar, D.; Boh, B & Pohleven, F. (2003). Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides. Journal of Biotechnology. 103 77-86. https://doi.org/10.1016/S0168-1656(03)00069-5

Box, G. E. P.; Hunter, W. G. & Hunter, J. S. (1978). Statistics for experimenters: an introduction to design, data analysis, and model building. NewYork: John Wiley & Sons.

Burkert, J. F. M.; Maugeri, F.& Rodrigues, M. I. (2004). Optimization ofextracellular lipase production by Geotrichum sp. using factorial design. Bioresource Technology; 91:77–84. https://doi.org/10.1016/S0960-8524(03)00152-4

Benjamin, S. & Pandey, A. (2001) Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation. Brazil Arch Biol Technol 44:213–221. http://dx.doi.org/10.1590/S1516-89132001000200016

Colla, L. M.; Primaz, A. L.; Benedetti, S.; Loss, R. A.; Lima, M. de.; Reinehr, C. O.; Bertolin, T. E. & Costa, J. A. V. (2016). Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi. Braz. J. Microbiol. vol.47 no.2, 461-467. São Paulo Apr./June. http://dx.doi.org/10.1016/j.bjm.2016.01.028

Coradi, G.V.; Visitacão, V. L. da.; Lima, E. A. de.; Saito, L. Y. T.; Palmieri, D. A.; Takita, M. A.; Neto, P. de O. & Lima, V. M. G. (2013). Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Annals of Microbiology; 63:533–540. https://doi-org.ez6.periodicos.capes.gov.br/10.1007/s13213-012-0500-1

Dandavate, V.; Jinjala, J.; Keharia, H. & Madamwar, D. (2009). Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis, Bioresour. Technol. 100 q3374–3381. https://doi.org/10.1016/j.biortech.2009.02.011

Dheeman, D. S.; Antony-Babub, S.; Frías, J. M. & Henehan, G. T. M. (2011). Purification and characterization of an extracellular lipase from a novel strain Penicillium sp. DS-39 (DSM 23773). Journal of Molecular Catalysis B: Enzymatic Volume 72, Issues 3–4, pp. 256-262. https://doi.org/10.1016/j.molcatb.2011.06.013

Fan, T.; Hu, J.; Fu, L. & Zhang, L. (2015) Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology. Carbohyd. Polym. 115, 701-706. https://doi.org/10.1016/j.carbpol.2014.09.009

Ghamgui, H.; Miled, N.; Karra-Chaâbouni, M. & Gargouri, Y. (2007). Immobilization studies and biochemical properties of free and immobilized Rhizopus oryzae lipase onto CaCO3: A comparative study. Biochem. Eng. J. 37 34–41. https://doi.org/10.1016/j.bej.2007.03.006

Haack, M. B.; Olsson, L.; Hansen, K. & Lantz, A. E. (2006). Change in hyphal morphology of Aspergillus oryzae during fed-batch cultivation. Appl Microbiol Biotechnol. 70: 482-487. https://doi-org.ez6.periodicos.capes.gov.br/10.1007/s00253-005-0085-8

Hiol, A.; Jonzo MD.; Rugani, N.; Druet, D.; Sarda, L. & Comeau, L. C. (2000). Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme Microb Tech. 26: 421-430. https://doi.org/10.1016/S0141-0229(99)00173-8

Jinaporn Wongwatanapaiboon, Waraporn Malilas, Chalermchai Ruangchainikom, Gamgarn Thummadetsak, Suphang Chulalaksananukul, Alain Marty & Warawut Chulalaksananukul.(2016).Overexpression of Fusarium solani lipase in Pichia pastoris and its application in lipid degradation, Biotechnology & Biotechnological Equipment, 30:5, pp.885-893, DOI: 10.1080/13102818.2016.1202779

Lima V.M.G.; Krieger, N.; Mitchell, D. A. & Fontana, J. D. (2004) Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochemical Engineering Journal. 18 65–71. https://doi.org/10.1016/S1369-703X(03)00165-7

Kaushik, R.; Saran, S.; Isar, J. & Saxena, R. K. (2006). Statistical optimizationof medium components and growth conditions by responsesurface methodology to enhance lipase production by Aspergillus carneus. J Mol Catal B: Enzym. 40: 121–126. https://doi.org/10.1016/j.molcatb.2006.02.019

Kamini, N. R. & Mala, J. G. S.; Puvanakrishnan, R. (1998) Lipase production from Aspergillus niger by solid-state fermentation using gingelly oil cake. Process Biochem. 33:505–511. https://doi.org/10.1016/S0032-9592(98)00005-3

Kempka, A. P.; Lipke, N. L.; Pinheiro, T. da L. F.; Menoncin, S.; Treichel, H.; Freire, D. M. G.; Luccio, M. D. & Oliveira, D. de. (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess Biosyst. Eng 31: 119. https://doi-org.ez6.periodicos.capes.gov.br/10.1007/s00449-007-0154-8

Maciel, V. F. A.; Pacheco, T. F. & Gonçalves, S. B. (2010). Padronização do uso de corante rodamina B para avaliação de atividade lipolítica em estirpes fúngicas. Embrapa. Comunicado Técnico n. 05.

Messias, J. M.; Costa, B. Z. da.; Lima, V. M. G. de.; Giese, E. C.; Dekker, R. F. H. & Barbosa, A. de M. (2011). Microbial lipases: Production, properties and biotechnological applications. Semana: Ciências Exatas e Tecnológicas, Londrina, v. 32, n. 2, p. 213-234. DOI: 10.5433/1679-0375.

Muralidhar, R. V.; Chirumamila, R. R.; Marchant, R. & Nigam, P. (2001). A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal. Volume 9, Issue 1, November, Pages 17-23. https://doi.org/10.1016/S1369-703X(01)00117-6

Ozen, A.; Colak, A.; Dincer, B. & Guner, S. A. (2004). diphenolase from persimmon fruits (Diospyros kaki L., Ebenaceae). Food Chem. 85: 431-437, https://doi.org/10.1016/j.foodchem.2003.07.022

Park, E. Y.; Sato, M.; Kojima, S. (2006). Fatty acid methyl ester production using lipase-immobilizing silica particles with different particle sizes and different specific surface areas. Enzyme Microb Technol.; 39:889–896.11. https://doi.org/10.1016/j.enzmictec.2006.01.022

Pastore, G. M.; Costa, V. S. R. da. & Koblitz, M. G. B. (2003). Production, partial purification and biochemical characterization of a novell Rhizopus sp. strain lipase. Ciênc Tecnol Alimentos. 23: 135–140. http://dx.doi.org/10.1590/S0101-20612003000200006

Pera, L. M.; Romero, C. M.; Baigori, M. D. & Castro, G. R. (2006). Catalytic Properties of Lipase Extracts from Aspergillus niger. Food Technology and Biotechnology, v. 44, n. 2, p. 247–252,. http://www.ftb.com.hr/archives/80-volume-44-issue-no-2/454-catalytic-properties-

Protimiza Experimental Design: Software de Planejamento Experimental e Otimização de Processos. Versão única; 2014. http://experimental-design.protimiza.com.br/

Rajendran, A.; Palanisamy, A. & Thangavelu, V. (2008). Evaluation ofmedium components by Plackett–Burman statistical designfor lipase production by Candida rugosa and kinetic modeling. Chin J Biotechnol.; 24:436–444. ISSN 1000-3061.

Reshma, M. V.; Saritha, S. S.; Balachandran, C. & Arumughan, C. (2008). Lipase catalyzed interesterification of palm stearin and rice bran oil blends for preparation of zero trans shortening with bioactive phytochemicals. Bioresour Technol.;99:5011–5019. https://doi.org/10.1016/j.biortech.2007.09.009

Rodrigues, M. I. & Iemma, A. F. (2014). Experimental design and process optimization. New York: CRC Press.

Salihu, A.; Alam, M. D. Z.; Abdulkarim, M. I. & Salleh, H. M. (2011). Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design. Journal of Molecular Catalysis B: Enzymatic. Volume 69, Issues 1–2, pp. 66-73. https://doi.org/10.1016/j.molcatb.2010.12.012

Sangster, J. (1989). Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. 18 (3) 1111–1227. https://doi-org.ez6.periodicos.capes.gov.br/10.1063/1.555833

Shu, C.; Xu, C. & Lin, G. (2006). Purification and partial characterization of a lipase from Antrodia cinnamomea. Process Biochem. 41:734–738. https://doi.org/10.1016/j.procbio.2005.09.007

Wang, D.; Xu, Y. & Shan, T. (2008). Effects of oils and oil-relatedsubstrates on the synthetic activity of membrane-boundlipase from Rhizopus chinensis and optimization of the lipasefermentation media. Biochem Eng J. 41:30–37. https://doi.org/10.1016/j.bej.2008.03.003

Ülker, S.; Ozel, A.; Colak, A. & Karaoğlu, Ş. A. (2010) Isolation, production and characterization of an extracellular lipase from Trichoderma harzianum isolated from soil. Turk. J. Biol. 35, 543-550. doi:10.3906/biy-1004-107

Downloads

Publicado

19/08/2022

Como Citar

MENDES, D. B.; SILVA , F. F. da .; GUARDA, P. M.; ALMEIDA, A. . F. de; GUARDA , E. . A. Lipase de Fusarium solani: otimização das condições de cultivo, propriedades bioquímicas e produção. Research, Society and Development, [S. l.], v. 11, n. 11, p. e191111133447, 2022. DOI: 10.33448/rsd-v11i11.33447. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33447. Acesso em: 2 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas