Photoelastic analysis of narrow implants in atrophic maxilla: in vitro study




Atrophic maxilla; Narrow implants; Photoelastic analysis.


Rehabilitation in atrophic maxilla brings challenges due to the continuous and progressive alveolar resorption and alveolar pneumatization of the maxillary sinus, which makes rehabilitation with conventional size implants unfeasible. One of the alternatives for these cases is the use of narrow implants. Thus, the aim of the present study was to verify the viability of narrow implants in the total rehabilitation of the atrophic maxilla. The photoelastic analysis method was used, creating six groups: GC1 (4.1 mm x 10.0 mm), GC2 (4.1 mm x 12.0 mm), NC1 (3.3 mm x 10.0 mm), NC2 (3.3 mm x 12.0 mm) , SC1 (2.9 mm x 10.0 mm) and SC2 (2.9 mm x 12.0 mm) that were evaluated in the circular polariscope model PTH-A-01 (LPM/FME/UFU) with centric loading, left/right laterality and 5 N protrusive The models were tested, photographed and analyzed according to isometric fringe orders. The analysis of color patterns and location aided in the quantitative-qualitative interpretation and tensions of the subgroups tested arising from the forces on osseointegrated implants arranged in an arch, “all-on-four” rehabilitation type in the maxilla. The evaluated groups showed a positive interaction in relation to the increase in the diameter of the implants, with a decrease in the stress concentration for the region of the central implants. No difference was observed between the groups in the protrusive loading and, in relation to the distal loadings, the stresses in all groups ranged from low to high. Thus, in general, no significant differences were found in relation to narrow implants when compared to regular diameter implants.


Assunção, W. G., Barão, V. A. R., Tabata, L. F., Gomes, É. A., Delben, J. A., & dos Santos, P. H. (2009). Biomechanics studies in dentistry: bioengineering applied in oral implantology. Journal of Craniofacial Surgery, 20(4), 1173-1177.

Asvanund, P., & Morgano, S. M. (2011). Photoelastic stress analysis of external versus internal implant-abutment connections. The Journal of prosthetic dentistry, 106(4), 266-271.

Barbosa, G. A. S., Bernardes, S. R., de Mattos, M. D. G. C., Neto, A. J. F., das Neves, F. D., & Ribeiro, R. F. (2007). Estudo comparativo dos métodos de avaliação do desajuste vertical na interface pilar/implante. Brazilian Dental Science, 10(1).

Cariello, M. P., de Arruda Nóbilo, M. A., Henriques, G. E. P., Mesquita, M. F., Xediek, R. L., & de Lira, A. F. (2010). Implant-supported titanium framework: photoelastic analysis before and after spark erosion procedure. Brazilian Journal of Oral Sciences, 9(1), 48-53.

Chiapasco, M., Zaniboni, M., & Boisco, M. (2006). Augmentation procedures for the rehabilitation of deficient edentulous ridges with oral implants. Clinical oral implants research, 17(S2), 136-159.

Comfort, M. B., Chu, F. C. S., Chai, J., Wat, P. Y. P., & Chow, T. W. (2005). A 5‐year prospective study on small diameter screw‐shaped oral implants. Journal of Oral Rehabilitation, 32(5), 341-345.

Castro, G. C. D., Araújo, C. A. D., Mesquita, M. F., Consani, R. L. X., & Nóbilo, M. A. D. A. (2013). Stress distribution in Co-Cr implant frameworks after laser or TIG welding. Brazilian dental journal, 24, 147-151.

Duyck, J., Van Oosterwyck, H., Vander Sloten, J., De Cooman, M., Puers, R., & Naert, I. (2000). Magnitude and distribution of occlusal forces on oral implants supporting fixed prostheses: an in vivo study. Clinical oral implants research, 11(5), 465-475.

Franco, M., Viscioni, A., Rigo, L., Guidi, R., Zollino, I., Avantaggiato, A., & Carinci, F. (2009). Clinical outcome of narrow diameter implants inserted into allografts. Journal of Applied Oral Science, 17, 301-306.

Goiato, M. C., do Prado Ribeiro, P., Pellizzer, E. P., Idelmo Rangel Garcia, J., Pesqueira, A. A., & Haddad, M. F. (2009). Photoelastic analysis of stress distribution in different retention systems for facial prosthesis. Journal of Craniofacial Surgery, 20(3), 757-761.

Goiato, M. C., Tonella, B. P., do Prado Ribeiro, P., Ferraço, R., & Pellizzer, E. P. (2009). Methods used for assessing stresses in buccomaxillary prostheses: photoelasticity, finite element technique, and extensometry. Journal of Craniofacial Surgery, 20(2), 561-564.

Gonçalves, A. R. D. Q., Da Silva, A. L., De Mattos, F. R., Barros, M. B., & Motta, S. H. G. (2009). Implantes curtos na mandíbula são seguros?. RGO: Revista Gaúcha de Odontologia, 57(3).

Ivanoff, C. J., Gröndahl, K., Sennerby, L., Bergström, C., & Lekholm, U. (1999). Influence of variations in implant diameters: a 3-to 5-year retrospective clinical report. International Journal of Oral & Maxillofacial Implants, 14(2).

Lai, H. C., Si, M. S., Zhuang, L. F., Shen, H., Liu, Y. L., & Wismeijer, D. (2013). Long‐term outcomes of short dental implants supporting single crowns in posterior region: a clinical retrospective study of 5–10 years. Clinical Oral Implants Research, 24(2), 230-237.

Markarian, R. A., Ueda, C., Sendyk, C. L., Laganá, D. C., & Souza, R. M. (2007). Stress distribution after installation of fixed frameworks with marginal gaps over angled and parallel implants: a photoelastic analysis. Journal of Prosthodontics, 16(2), 117-122.

Menchero Cantalejo, E., Barona Dorado, C., Cantero Álvarez, M., Fernández Cáliz, F., & Martínez González, J. M. (2011). Meta-analysis on the survival of short implants.

Monje, A., Chan, H. L., Fu, J. H., Suarez, F., Galindo‐Moreno, P., & Wang, H. L. (2013). Are short dental implants (< 10 mm) effective? A meta‐analysis on prospective clinical trials. Journal of Periodontology, 84(7), 895-904.

Pjetursson, B. E., Tan, W. C., Zwahlen, M., & Lang, N. P. (2008). A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation: part I: lateral approach. Journal of clinical periodontology, 35, 216-240.

Queiroz, T. P., Aguiar, S. C., Margonar, R., de Souza Faloni, A. P., Gruber, R., & Luvizuto, E. R. (2015). Clinical study on survival rate of short implants placed in the posterior mandibular region: resonance frequency analysis. Clinical oral implants research, 26(9), 1036-1042.

Quek, C. E., Tan, K. B., & Nicholls, J. I. (2006). Load fatigue performance of a single-tooth implant abutment system: effect of diameter. International Journal of Oral & Maxillofacial Implants, 21(6).

Renouard, F., & Nisand, D. (2006). Impact of implant length and diameter on survival rates. Clinical oral implants research, 17(S2), 35-51.

Rocha, F. K. L., de Jesus, L. G., & de Assis, A. F. (2020). Reabilitação de maxila atrófica com implantes zigomáticos: relato de caso. Revista da Faculdade de Odontologia-UPF, 25(1), 96-106.

Sadowsky, S. J., & Caputo, A. A. (2004). Stress transfer of four mandibular implant overdenture cantilever designs. The Journal of prosthetic dentistry, 92(4), 328-336.

Tiossi, R., De Torres, E. M., Rodrigues, R. C., Conrad, H. J., Maria da Gloria, C., Fok, A. S., & Ribeiro, R. F. (2014). Comparison of the correlation of photoelasticity and digital imaging to characterize the load transfer of implant-supported restorations. The Journal of Prosthetic Dentistry, 112(2), 276-284.

Turcio, K. H. L., Goiato, M. C., Gennari Filho, H., & dos Santos, D. M. (2009). Photoelastic analysis of stress distribution in oral rehabilitation. Journal of Craniofacial Surgery, 20(2), 471-474.

Yaltirik, M., Gökçen-Röhlig, B., Ozer, S., & Evlioglu, G. (2011). Clinical evaluation of small diameter straumann implants in partially edentulous patients: a 5-year retrospective study. Journal of Dentistry (Tehran, Iran), 8(2), 75.

Zweers, J., Van Doornik, A., Hogendorf, E. A. H., Quirynen, M., & Van der Weijden, G. A. (2015). Clinical and radiographic evaluation of narrow‐vs. regular‐diameter dental implants: a 3‐year follow‐up. A retrospective study. Clinical oral implants research, 26(2), 149-156.



How to Cite

BORBA, A. S. M. .; BORBA, M. C. M. .; ASSIS, D. S. F. R. de; PESTANA, A. M. .; FERNANDES, M. R. U.; NÓBILO, M. A. de A. .; GARCEZ SEGUNDO, A. S. . Photoelastic analysis of narrow implants in atrophic maxilla: in vitro study. Research, Society and Development, [S. l.], v. 11, n. 11, p. e356111133466, 2022. DOI: 10.33448/rsd-v11i11.33466. Disponível em: Acesso em: 6 oct. 2022.



Health Sciences