A bibliometric analysis of the relationship between Digital Twins and Health Management: based on the Web of Science (WoS) platform
DOI:
https://doi.org/10.33448/rsd-v11i12.34270Keywords:
Digital twin; Digital healthcare; Industry 4.0; Cyber-physical systems; Internet of things.Abstract
Amidst the development of Industry 4.0, the appropriation of digital tools applied to production and manufacturing of activities represents a challenge for managers in other areas. Digital Twin (DT) technology is based on the integration of different "traditional" tools, such as simulation modeling and sensors, and aims to increase the performance of any process that can be represented virtually. With the increase in population, the demand for more efficient and universal Health Management (HM) has become a challenge of the 21st century. This study aims to analyze the relationship between the field of knowledge DT and HM and their interactions. A bibliometric review was performed using the Web of Science database through the Bibliometrix package and the VOSviewer application to evaluate studies, applications and identify research clusters and future trends. Our study indicates that the applications of DT in HM are focused on the diagnosis and monitoring of chronic diseases and that, so far, there is not a critical mass of knowledge that consolidates a general theory of application of DT and HM. This study identifies a relational hotspot between the integration of a DT in the optimization of resource management and patient care.
References
Agnusdei, G. P., Elia, V., & Gnoni, M. G. (2021). Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review. Applied Sciences, 11(6), 2767. https://doi.org/10.3390/app11062767
Armendia, M., Cugnon, F., Berglind, L., Ozturk, E., Gil, G., & Selmi, J. (2019). Evaluation of Machine Tool Digital Twin for machining operations in industrial environment. Procedia CIRP, 82, 231–236. https://doi.org/10.1016/j.procir.2019.04.040
Bányai, Á., Illés, B., Glistau, E., Machado, N. I. C., Tamás, P., Manzoor, F., & Bányai, T. (2019). Smart Cyber-Physical Manufacturing: Extended and Real-Time Optimization of Logistics Resources in Matrix Production. Applied Sciences, 9(7), 1287. https://doi.org/10.3390/app9071287.
Barricelli, B. R., Casiraghi, E., & Fogli, D. (2019). A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access, 7, 167653–167671. https://doi.org/10.1109/access.2019.2953499
Barricelli, B. R., Casiraghi, E., Gliozzo, J., Petrini, A., & Valtolina, S. (2020). Human Digital Twin for Fitness Management. IEEE Access, 8, 26637–26664. https://doi.org/10.1109/access.2020.2971576
Baskaran, S., Niaki, F. A., Tomaszewski, M., Gill, J. S., Chen, Y., Jia, Y., Mears, L., & Krovi, V. (2019). Digital Human and Robot Simulation in Automotive Assembly using Siemens Process Simulate: A Feasibility Study. Procedia Manufacturing, 34, 986–994. https://doi.org/10.1016/j.promfg.2019.06.097
Bruynseels, K., Santoni de Sio, F., & van den Hoven, J. (2018). Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Frontiers in Genetics, 9, 31. https://doi.org/10.3389/fgene.2018.00031
Chen, Y. (2017). Integrated and intelligent manufacturing: Perspectives and enablers (Engineering, Ed.; Vol. 3, pp. 588–595) Engineering.
da Silva, A. F. C., de Oliveira Ribeiro, A., de Souza Cruz, B. S., de Almeida, C. P., Costa, K. A., & Sabbadini, F. S. (2022). Análise da integração da indústria 4.0 e economia circular para consolidação do conceito da remanufatura 4.0: um estudo bibliométrico. Research, Society and Development, 11(7), e9511729687-e9511729687.
Deng, M., Menassa, C. C., & Kamat, V. R. (2021). From BIM to digital twins: a systematic review of the evolution of intelligent building representations in the AEC-FM industry. Journal of Information Technology in Construction, 26, 58–83. https://doi.org/10.36680/j.itcon.2021.005
Ferligoj, A., Kronegger, L., Mali, F., Snijders, T. A. B., & Doreian, P. (2015). Scientific collaboration dynamics in a national scientific system. Scientometrics, 104(3), 985–1012. https://doi.org/10.1007/s11192-015-1585-7
Gong, R., Xue, J., Zhao, L., Zolotova, O., Ji, X., & Xu, Y. (2019). A Bibliometric Analysis of Green Supply Chain Management Based on the Web of Science (WOS) Platform. Sustainability, 11(12), 3459. https://doi.org/10.3390/su11123459
Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication: Vol. White Paper 1. NASA.
Hofmann, W., & Branding, F. (2019). Implementation of an IoT- and Cloud-based Digital Twin for Real-Time Decision Support in Port Operations. IFAC-PapersOnLine, 52(13), 2104–2109. https://doi.org/10.1016/j.ifacol.2019.11.516
Hou, L., Wu, S., Zhang, G. (Kevin), Tan, Y., & Wang, X. (2020). Literature Review of Digital Twins Applications in Construction Workforce Safety. Applied Sciences, 11(1), 339. https://doi.org/10.3390/app11010339
Hu, L., Nguyen, N.-T., Tao, W., Leu, M. C., Liu, X. F., Shahriar, M. R., & Al Sunny, S. M. N. (2018). Modeling of Cloud-Based Digital Twins for Smart Manufacturing with MT Connect. Procedia Manufacturing, 26, 1193–1203. https://doi.org/10.1016/j.promfg.2018.07.155
Hu, M., Zhong, Y., Xie, S., Lv, H., & Lv, Z. (2021). Fuzzy System Based Medical Image Processing for Brain Disease Prediction. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.714318
Huang, P., Kim, K., & Schermer, M. (2022). Mapping the Ethical Issues of Digital Twins for Personalised Healthcare Service (Preprint). Journal of Medical Internet Research. https://doi.org/10.2196/33081
Ivanov, D., & Dolgui, A. (2019). New disruption risk management perspectives in supply chains: digital twins, the ripple effect, and resileanness. IFAC-PapersOnLine, 52(13), 337–342. https://doi.org/10.1016/j.ifacol.2019.11.138
Kaewunruen, S., Sresakoolchai, J., Ma, W., & Phil-Ebosie, O. (2021). Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions. Sustainability, 13(4), 2051. https://doi.org/10.3390/su13042051
Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C., & Holmström, J. (2019). Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings. IEEE Access, 7, 147406–147419. https://doi.org/10.1109/ACCESS.2019.2946515
Khan, S., Arslan, T., & Ratnarajah, T. (2022). Digital Twin Perspective of Fourth Industrial and Healthcare Revolution. IEEE Access, 10, 25732–25754. https://doi.org/10.1109/access.2022.3156062.
Kuts, V., Modoni, G. E., Otto, T., Sacco, M., Tähemaa, T., Bondarenko, Y., & Wang, R. (2019). Synchronizing physical factory and its digital twin through an IIoT middleware: a case study. Proceedings of the Estonian Academy of Sciences, 68(4), 364. https://doi.org/10.3176/proc.2019.4.03
Lezzi, M., Lazoi, M., & Corallo, A. (2018). Cybersecurity for Industry 4.0 in the current literature: A reference framework. Computers in Industry, 103, 97–110. https://doi.org/10.1016/j.compind.2018.09.004
Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z., & Deen, M. J. (2019). A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access, 7, 49088–49101. https://doi.org/10.1109/access.2019.2909828
Macchi, M., Roda, I., Negri, E., & Fumagalli, L. (2018). Exploring the role of Digital Twin for Asset Lifecycle Management. IFAC-PapersOnLine, 51(11), 790–795. https://doi.org/10.1016/j.ifacol.2018.08.415
Madni, A., Madni, C., & Lucero, S. (2019). Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems, 7(1), 7. https://doi.org/10.3390/systems7010007
Mansoori, P. (2018). 50 years of Iranian clinical, biomedical, and public health research: a bibliometric analysis of the Web of Science Core Collection (1965-2014). Journal of Global Health, 8(2). https://doi.org/10.7189/jogh.08.020701
Mazhar Rathore, M., Shah, S. A., Shukla, D., Bentafat, E., & Bakiras, S. (2021). The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities. IEEE Access, 1–1. https://doi.org/10.1109/access.2021.3060863
Moshobane, M. C., Khoza, T. T., & Niassy, S. (2021). The period of insect research in the tropics: a bibliometric analysis. International Journal of Tropical Insect Science, 42(1), 989–998. https://doi.org/10.1007/s42690-021-00616-2
Negri, E., Ardakani, H. D., Cattaneo, L., Singh, J., Macchi, M., & Lee, J. (2019). A Digital Twin-based scheduling framework including Equipment Health Index and Genetic Algorithms. IFAC-PapersOnLine, 52(10), 43–48. https://doi.org/10.1016/j.ifacol.2019.10.024
Pang, J., Huang, Y., Xie, Z., Li, J., & Cai, Z. (2021). Collaborative city digital twin for the COVID-19 pandemic: A federated learning solution. Tsinghua Science and Technology, 26(5), 759–771. https://doi.org/10.26599/tst.2021.9010026
Pang, T. Y., Pelaez Restrepo, J. D., Cheng, C.-T., Yasin, A., Lim, H., & Miletic, M. (2021). Developing a Digital Twin and Digital Thread Framework for an “Industry 4.0” Shipyard. Applied Sciences, 11(3), 1097. https://doi.org/10.3390/app11031097
Pizzolato, C., Saxby, D. J., Palipana, D., Diamond, L. E., Barrett, R. S., Teng, Y. D., & Lloyd, D. G. (2019). Neuromusculoskeletal Modeling-Based Prostheses for Recovery After Spinal Cord Injury. Frontiers in Neurorobotics, 13. https://doi.org/10.3389/fnbot.2019.00097
Popa, E. O., van Hilten, M., Oosterkamp, E., & Bogaardt, M.-J. (2021). The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks. Life Sciences, Society and Policy, 17(1). https://doi.org/10.1186/s40504-021-00113-x
Qiao, Q., Wang, J., Ye, L., & Gao, R. X. (2019). Digital Twin for Machining Tool Condition Prediction. Procedia CIRP, 81, 1388–1393. https://doi.org/10.1016/j.procir.2019.04.049
Sarkar, A., Wang, H., Rahman, A., Memon, W. H., & Qian, L. (2022). A bibliometric analysis of sustainable agriculture: based on the Web of Science (WOS) platform. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-19632-x
Scharff, S. (2010). From Digital Twin to Improved Patient Experience. (Siemens Healthineers, Ed.) [Review of From Digital Twin to Improved Patient Experience.]. https://www.siemens-healthineers.com/news/mso-digitaltwin-mater.html
Schimanski, Pasetti Monizza, Marcher, & Matt. (2019). Pushing Digital Automation of Configure-to-Order Services in Small and Medium Enterprises of the Construction Equipment Industry: A Design Science Research Approach. Applied Sciences, 9(18), 3780. https://doi.org/10.3390/app9183780
Sepasgozar, S. M. E., Karimi, R., Shirowzhan, S., Mojtahedi, M., Ebrahimzadeh, S., & McCarthy, D. (2019). Delay Causes and Emerging Digital Tools: A Novel Model of Delay Analysis, Including Integrated Project Delivery and PMBOK. Buildings, 9(9), 191. https://doi.org/10.3390/buildings9090191
Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N., & Devine, D. (2021). Digital Twin: Origin to Future. Applied System Innovation, 4(2), 36. https://doi.org/10.3390/asi4020036
Soosaraei, M., Khasseh, A. A., Fakhar, M., & Hezarjaribi, H. Z. (2018). A decade bibliometric analysis of global research on leishmaniasis in Web of Science database. Annals of Medicine and Surgery, 26, 30–37. https://doi.org/10.1016/j.amsu.2017.12.014
Sweileh, W. M., Al-Jabi, S. W., Sawalha, A. F., & Zyoud, S. H. (2014). Bibliometric analysis of nutrition and dietetics research activity in Arab countries using ISI Web of Science database. SpringerPlus, 3(1). https://doi.org/10.1186/2193-1801-3-718
Talkhestani, B. A., Jazdi, N., Schlögl, W., & Weyrich, M. (2018). A concept in synchronization of virtual production system with real factory based on anchor-point method. Procedia CIRP, 67, 13–17. https://doi.org/10.1016/j.procir.2017.12.168
van Eck, N. J., & Waltman, L. (2009). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Voigt, I., Inojosa, H., Dillenseger, A., Haase, R., Akgün, K., & Ziemssen, T. (2021). Digital Twins for Multiple Sclerosis. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.669811
Vrabič, R., Erkoyuncu, J. A., Butala, P., & Roy, R. (2018). Digital twins: Understanding the added value of integrated models for through-life engineering services. Procedia Manufacturing, 16, 139–146. https://doi.org/10.1016/j.promfg.2018.10.167
Wagner, R., Schleich, B., Haefner, B., Kuhnle, A., Wartzack, S., & Lanza, G. (2019). Challenges and Potentials of Digital Twins and Industry 4.0 in Product Design and Production for High Performance Products. Procedia CIRP, 84, 88–93. https://doi.org/10.1016/j.procir.2019.04.219
Wan, Z., Dong, Y., Yu, Z., Lv, H., & Lv, Z. (2021). Semi-Supervised Support Vector Machine for Digital Twins Based Brain Image Fusion. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.705323
Zhang, C., Xu, W., Liu, J., Liu, Z., Zhou, Z., & Pham, D. T. (2019). A Reconfigurable Modeling Approach for Digital Twin-based Manufacturing System. Procedia CIRP, 83, 118–125. https://doi.org/10.1016/j.procir.2019.03.141
Zhou, M. Yan, J. Feng, D. (2019). Digital twin and its application to power grid online analysis. CSEE Journal of Power and Energy Systems. https://doi.org/10.17775/cseejpes.2018.01460
Zyoud, S. H., Waring, W. S., Al-Jabi, S. W., & Sweileh, W. M. (2017). Global cocaine intoxication research trends during 1975–2015: a bibliometric analysis of Web of Science publications. Substance Abuse Treatment, Prevention, and Policy, 12(1). https://doi.org/10.1186/s13011-017-0090-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Anderson de Oliveira Ribeiro; Francisco Santos Sabbadini; Kelly Alonso Costa; Bruna Sacramento de Souza Cruz
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.