Un análisis bibliométrico de la relación entre Digital Twins y Health Management: basado en la plataforma Web of Science (WoS)
DOI:
https://doi.org/10.33448/rsd-v11i12.34270Palabras clave:
Gemelo digital; Industria 4.0; Sanidad digital; Sistemas ciberfísicos; Internet de las cosas.Resumen
En medio del desarrollo de la Industria 4.0, la apropiación de herramientas digitales aplicadas a la producción y fabricación de actividades representa un desafío para los gestores de otras áreas. La tecnología Digital Twin (DT) se basa en la integración de diferentes herramientas "tradicionales", como el modelado de simulación y sensores, y tiene como objetivo aumentar el rendimiento de cualquier proceso que pueda representarse virtualmente. Con el aumento de la población, la demanda de una Gestión Sanitaria (GS) más eficiente y universal se ha convertido en un reto del siglo XXI. Este estudio tiene como objetivo analizar la relación entre el campo de conocimiento DT y HM y sus interacciones. Se realizó una revisión bibliométrica utilizando la base de datos Web of Science a través del paquete Bibliometrix y la aplicación VOSviewer para evaluar estudios, aplicaciones e identificar clusters de investigación y tendencias futuras. Nuestro estudio indica que las aplicaciones de DT en HM están enfocadas al diagnóstico y seguimiento de enfermedades crónicas y que, hasta el momento, no existe una masa crítica de conocimiento que consolide una teoría general de aplicación de DT y HM. Este estudio identifica un punto de acceso relacional entre la integración de un DT en la optimización de la gestión de recursos y la atención al paciente.
Citas
Agnusdei, G. P., Elia, V., & Gnoni, M. G. (2021). Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review. Applied Sciences, 11(6), 2767. https://doi.org/10.3390/app11062767
Armendia, M., Cugnon, F., Berglind, L., Ozturk, E., Gil, G., & Selmi, J. (2019). Evaluation of Machine Tool Digital Twin for machining operations in industrial environment. Procedia CIRP, 82, 231–236. https://doi.org/10.1016/j.procir.2019.04.040
Bányai, Á., Illés, B., Glistau, E., Machado, N. I. C., Tamás, P., Manzoor, F., & Bányai, T. (2019). Smart Cyber-Physical Manufacturing: Extended and Real-Time Optimization of Logistics Resources in Matrix Production. Applied Sciences, 9(7), 1287. https://doi.org/10.3390/app9071287.
Barricelli, B. R., Casiraghi, E., & Fogli, D. (2019). A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access, 7, 167653–167671. https://doi.org/10.1109/access.2019.2953499
Barricelli, B. R., Casiraghi, E., Gliozzo, J., Petrini, A., & Valtolina, S. (2020). Human Digital Twin for Fitness Management. IEEE Access, 8, 26637–26664. https://doi.org/10.1109/access.2020.2971576
Baskaran, S., Niaki, F. A., Tomaszewski, M., Gill, J. S., Chen, Y., Jia, Y., Mears, L., & Krovi, V. (2019). Digital Human and Robot Simulation in Automotive Assembly using Siemens Process Simulate: A Feasibility Study. Procedia Manufacturing, 34, 986–994. https://doi.org/10.1016/j.promfg.2019.06.097
Bruynseels, K., Santoni de Sio, F., & van den Hoven, J. (2018). Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Frontiers in Genetics, 9, 31. https://doi.org/10.3389/fgene.2018.00031
Chen, Y. (2017). Integrated and intelligent manufacturing: Perspectives and enablers (Engineering, Ed.; Vol. 3, pp. 588–595) Engineering.
da Silva, A. F. C., de Oliveira Ribeiro, A., de Souza Cruz, B. S., de Almeida, C. P., Costa, K. A., & Sabbadini, F. S. (2022). Análise da integração da indústria 4.0 e economia circular para consolidação do conceito da remanufatura 4.0: um estudo bibliométrico. Research, Society and Development, 11(7), e9511729687-e9511729687.
Deng, M., Menassa, C. C., & Kamat, V. R. (2021). From BIM to digital twins: a systematic review of the evolution of intelligent building representations in the AEC-FM industry. Journal of Information Technology in Construction, 26, 58–83. https://doi.org/10.36680/j.itcon.2021.005
Ferligoj, A., Kronegger, L., Mali, F., Snijders, T. A. B., & Doreian, P. (2015). Scientific collaboration dynamics in a national scientific system. Scientometrics, 104(3), 985–1012. https://doi.org/10.1007/s11192-015-1585-7
Gong, R., Xue, J., Zhao, L., Zolotova, O., Ji, X., & Xu, Y. (2019). A Bibliometric Analysis of Green Supply Chain Management Based on the Web of Science (WOS) Platform. Sustainability, 11(12), 3459. https://doi.org/10.3390/su11123459
Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication: Vol. White Paper 1. NASA.
Hofmann, W., & Branding, F. (2019). Implementation of an IoT- and Cloud-based Digital Twin for Real-Time Decision Support in Port Operations. IFAC-PapersOnLine, 52(13), 2104–2109. https://doi.org/10.1016/j.ifacol.2019.11.516
Hou, L., Wu, S., Zhang, G. (Kevin), Tan, Y., & Wang, X. (2020). Literature Review of Digital Twins Applications in Construction Workforce Safety. Applied Sciences, 11(1), 339. https://doi.org/10.3390/app11010339
Hu, L., Nguyen, N.-T., Tao, W., Leu, M. C., Liu, X. F., Shahriar, M. R., & Al Sunny, S. M. N. (2018). Modeling of Cloud-Based Digital Twins for Smart Manufacturing with MT Connect. Procedia Manufacturing, 26, 1193–1203. https://doi.org/10.1016/j.promfg.2018.07.155
Hu, M., Zhong, Y., Xie, S., Lv, H., & Lv, Z. (2021). Fuzzy System Based Medical Image Processing for Brain Disease Prediction. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.714318
Huang, P., Kim, K., & Schermer, M. (2022). Mapping the Ethical Issues of Digital Twins for Personalised Healthcare Service (Preprint). Journal of Medical Internet Research. https://doi.org/10.2196/33081
Ivanov, D., & Dolgui, A. (2019). New disruption risk management perspectives in supply chains: digital twins, the ripple effect, and resileanness. IFAC-PapersOnLine, 52(13), 337–342. https://doi.org/10.1016/j.ifacol.2019.11.138
Kaewunruen, S., Sresakoolchai, J., Ma, W., & Phil-Ebosie, O. (2021). Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions. Sustainability, 13(4), 2051. https://doi.org/10.3390/su13042051
Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C., & Holmström, J. (2019). Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings. IEEE Access, 7, 147406–147419. https://doi.org/10.1109/ACCESS.2019.2946515
Khan, S., Arslan, T., & Ratnarajah, T. (2022). Digital Twin Perspective of Fourth Industrial and Healthcare Revolution. IEEE Access, 10, 25732–25754. https://doi.org/10.1109/access.2022.3156062.
Kuts, V., Modoni, G. E., Otto, T., Sacco, M., Tähemaa, T., Bondarenko, Y., & Wang, R. (2019). Synchronizing physical factory and its digital twin through an IIoT middleware: a case study. Proceedings of the Estonian Academy of Sciences, 68(4), 364. https://doi.org/10.3176/proc.2019.4.03
Lezzi, M., Lazoi, M., & Corallo, A. (2018). Cybersecurity for Industry 4.0 in the current literature: A reference framework. Computers in Industry, 103, 97–110. https://doi.org/10.1016/j.compind.2018.09.004
Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z., & Deen, M. J. (2019). A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access, 7, 49088–49101. https://doi.org/10.1109/access.2019.2909828
Macchi, M., Roda, I., Negri, E., & Fumagalli, L. (2018). Exploring the role of Digital Twin for Asset Lifecycle Management. IFAC-PapersOnLine, 51(11), 790–795. https://doi.org/10.1016/j.ifacol.2018.08.415
Madni, A., Madni, C., & Lucero, S. (2019). Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems, 7(1), 7. https://doi.org/10.3390/systems7010007
Mansoori, P. (2018). 50 years of Iranian clinical, biomedical, and public health research: a bibliometric analysis of the Web of Science Core Collection (1965-2014). Journal of Global Health, 8(2). https://doi.org/10.7189/jogh.08.020701
Mazhar Rathore, M., Shah, S. A., Shukla, D., Bentafat, E., & Bakiras, S. (2021). The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities. IEEE Access, 1–1. https://doi.org/10.1109/access.2021.3060863
Moshobane, M. C., Khoza, T. T., & Niassy, S. (2021). The period of insect research in the tropics: a bibliometric analysis. International Journal of Tropical Insect Science, 42(1), 989–998. https://doi.org/10.1007/s42690-021-00616-2
Negri, E., Ardakani, H. D., Cattaneo, L., Singh, J., Macchi, M., & Lee, J. (2019). A Digital Twin-based scheduling framework including Equipment Health Index and Genetic Algorithms. IFAC-PapersOnLine, 52(10), 43–48. https://doi.org/10.1016/j.ifacol.2019.10.024
Pang, J., Huang, Y., Xie, Z., Li, J., & Cai, Z. (2021). Collaborative city digital twin for the COVID-19 pandemic: A federated learning solution. Tsinghua Science and Technology, 26(5), 759–771. https://doi.org/10.26599/tst.2021.9010026
Pang, T. Y., Pelaez Restrepo, J. D., Cheng, C.-T., Yasin, A., Lim, H., & Miletic, M. (2021). Developing a Digital Twin and Digital Thread Framework for an “Industry 4.0” Shipyard. Applied Sciences, 11(3), 1097. https://doi.org/10.3390/app11031097
Pizzolato, C., Saxby, D. J., Palipana, D., Diamond, L. E., Barrett, R. S., Teng, Y. D., & Lloyd, D. G. (2019). Neuromusculoskeletal Modeling-Based Prostheses for Recovery After Spinal Cord Injury. Frontiers in Neurorobotics, 13. https://doi.org/10.3389/fnbot.2019.00097
Popa, E. O., van Hilten, M., Oosterkamp, E., & Bogaardt, M.-J. (2021). The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks. Life Sciences, Society and Policy, 17(1). https://doi.org/10.1186/s40504-021-00113-x
Qiao, Q., Wang, J., Ye, L., & Gao, R. X. (2019). Digital Twin for Machining Tool Condition Prediction. Procedia CIRP, 81, 1388–1393. https://doi.org/10.1016/j.procir.2019.04.049
Sarkar, A., Wang, H., Rahman, A., Memon, W. H., & Qian, L. (2022). A bibliometric analysis of sustainable agriculture: based on the Web of Science (WOS) platform. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-19632-x
Scharff, S. (2010). From Digital Twin to Improved Patient Experience. (Siemens Healthineers, Ed.) [Review of From Digital Twin to Improved Patient Experience.]. https://www.siemens-healthineers.com/news/mso-digitaltwin-mater.html
Schimanski, Pasetti Monizza, Marcher, & Matt. (2019). Pushing Digital Automation of Configure-to-Order Services in Small and Medium Enterprises of the Construction Equipment Industry: A Design Science Research Approach. Applied Sciences, 9(18), 3780. https://doi.org/10.3390/app9183780
Sepasgozar, S. M. E., Karimi, R., Shirowzhan, S., Mojtahedi, M., Ebrahimzadeh, S., & McCarthy, D. (2019). Delay Causes and Emerging Digital Tools: A Novel Model of Delay Analysis, Including Integrated Project Delivery and PMBOK. Buildings, 9(9), 191. https://doi.org/10.3390/buildings9090191
Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N., & Devine, D. (2021). Digital Twin: Origin to Future. Applied System Innovation, 4(2), 36. https://doi.org/10.3390/asi4020036
Soosaraei, M., Khasseh, A. A., Fakhar, M., & Hezarjaribi, H. Z. (2018). A decade bibliometric analysis of global research on leishmaniasis in Web of Science database. Annals of Medicine and Surgery, 26, 30–37. https://doi.org/10.1016/j.amsu.2017.12.014
Sweileh, W. M., Al-Jabi, S. W., Sawalha, A. F., & Zyoud, S. H. (2014). Bibliometric analysis of nutrition and dietetics research activity in Arab countries using ISI Web of Science database. SpringerPlus, 3(1). https://doi.org/10.1186/2193-1801-3-718
Talkhestani, B. A., Jazdi, N., Schlögl, W., & Weyrich, M. (2018). A concept in synchronization of virtual production system with real factory based on anchor-point method. Procedia CIRP, 67, 13–17. https://doi.org/10.1016/j.procir.2017.12.168
van Eck, N. J., & Waltman, L. (2009). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Voigt, I., Inojosa, H., Dillenseger, A., Haase, R., Akgün, K., & Ziemssen, T. (2021). Digital Twins for Multiple Sclerosis. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.669811
Vrabič, R., Erkoyuncu, J. A., Butala, P., & Roy, R. (2018). Digital twins: Understanding the added value of integrated models for through-life engineering services. Procedia Manufacturing, 16, 139–146. https://doi.org/10.1016/j.promfg.2018.10.167
Wagner, R., Schleich, B., Haefner, B., Kuhnle, A., Wartzack, S., & Lanza, G. (2019). Challenges and Potentials of Digital Twins and Industry 4.0 in Product Design and Production for High Performance Products. Procedia CIRP, 84, 88–93. https://doi.org/10.1016/j.procir.2019.04.219
Wan, Z., Dong, Y., Yu, Z., Lv, H., & Lv, Z. (2021). Semi-Supervised Support Vector Machine for Digital Twins Based Brain Image Fusion. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.705323
Zhang, C., Xu, W., Liu, J., Liu, Z., Zhou, Z., & Pham, D. T. (2019). A Reconfigurable Modeling Approach for Digital Twin-based Manufacturing System. Procedia CIRP, 83, 118–125. https://doi.org/10.1016/j.procir.2019.03.141
Zhou, M. Yan, J. Feng, D. (2019). Digital twin and its application to power grid online analysis. CSEE Journal of Power and Energy Systems. https://doi.org/10.17775/cseejpes.2018.01460
Zyoud, S. H., Waring, W. S., Al-Jabi, S. W., & Sweileh, W. M. (2017). Global cocaine intoxication research trends during 1975–2015: a bibliometric analysis of Web of Science publications. Substance Abuse Treatment, Prevention, and Policy, 12(1). https://doi.org/10.1186/s13011-017-0090-9
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Anderson de Oliveira Ribeiro; Francisco Santos Sabbadini; Kelly Alonso Costa; Bruna Sacramento de Souza Cruz
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.