Uma análise bibliométrica da relação entre Gêmeos Digitais e Gestão em Saúde: com base na plataforma Web of Science (WoS)

Autores

DOI:

https://doi.org/10.33448/rsd-v11i12.34270

Palavras-chave:

Gêmeo digital; Saúde digital; Indústria 4.0; Sistemas ciberfísicos; Internet das coisas.

Resumo

Em meio ao desenvolvimento da Indústria 4.0, a apropriação de ferramentas digitais aplicadas à produção e fabricação de atividades representa um desafio para gestores de outras áreas. A tecnologia Digital Twin (DT) baseia-se na integração de diferentes ferramentas "tradicionais", como modelagem de simulação e sensores, e visa aumentar o desempenho de qualquer processo que possa ser representado virtualmente. Com o aumento da população, a demanda por Gestão em Saúde (GS) mais eficiente e universal tornou-se um desafio do século XXI. Este estudo tem como objetivo analisar a relação entre o campo de conhecimento DT e HM e suas interações. Foi realizada uma revisão bibliométrica utilizando a base de dados Web of Science por meio do pacote Bibliometrix e do aplicativo VOSviewer para avaliar estudos, aplicações e identificar clusters de pesquisa e tendências futuras. Nosso estudo indica que as aplicações da TD em HM estão voltadas para o diagnóstico e acompanhamento de doenças crônicas e que, até o momento, não existe uma massa crítica de conhecimento que consolide uma teoria geral de aplicação de TD e HM. Este estudo identifica um hotspot relacional entre a integração de um DT na otimização da gestão de recursos e atendimento ao paciente.

Biografia do Autor

Anderson de Oliveira Ribeiro, Centro Universitário Geraldo Di Biase; Brazil Universidade Federal Fluminense

Bacharel em Física pela Universidade do Estado do Rio de Janeiro (2004-2008). Mestre em Astronomia pelo Observatório Nacional (2008-2010), professor auxiliar da Universidade do Estado do Rio de Janeiro por dois anos no Departamento de Física Nuclear e Altas Energias (2010-2012). Doutor pelo Observatório Nacional (2010-2014) ambus sob a supervisão do Dr. Fernando Roig. Tem experiência na área de Astronomia, com ênfase em Astrofísica do Sistema Solar atuando principalmente nos seguintes temas: Sistema Solar, dinâmica de pequenos corpos do Sistema Solar. Participou do programa institucional de bolsas de doutorado sanduíche no exterior, este foi realizado no Complexo Astronômico El Leoncito (CASLEO) em San Juan - Argentina sob a supervisão do Dr. Ricardo Gil-Hutton. Pós-doutorado pelo Observatório Nacional no projeto J-Plus (2014-2015) e atualmente Professor no Centro Universitário Geraldo Di Biase (UGB-FERP) atuando no corpo docente dos cursos de engenharia mecânica e produção.

Referências

Agnusdei, G. P., Elia, V., & Gnoni, M. G. (2021). Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review. Applied Sciences, 11(6), 2767. https://doi.org/10.3390/app11062767

Armendia, M., Cugnon, F., Berglind, L., Ozturk, E., Gil, G., & Selmi, J. (2019). Evaluation of Machine Tool Digital Twin for machining operations in industrial environment. Procedia CIRP, 82, 231–236. https://doi.org/10.1016/j.procir.2019.04.040

Bányai, Á., Illés, B., Glistau, E., Machado, N. I. C., Tamás, P., Manzoor, F., & Bányai, T. (2019). Smart Cyber-Physical Manufacturing: Extended and Real-Time Optimization of Logistics Resources in Matrix Production. Applied Sciences, 9(7), 1287. https://doi.org/10.3390/app9071287.

Barricelli, B. R., Casiraghi, E., & Fogli, D. (2019). A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access, 7, 167653–167671. https://doi.org/10.1109/access.2019.2953499

Barricelli, B. R., Casiraghi, E., Gliozzo, J., Petrini, A., & Valtolina, S. (2020). Human Digital Twin for Fitness Management. IEEE Access, 8, 26637–26664. https://doi.org/10.1109/access.2020.2971576

Baskaran, S., Niaki, F. A., Tomaszewski, M., Gill, J. S., Chen, Y., Jia, Y., Mears, L., & Krovi, V. (2019). Digital Human and Robot Simulation in Automotive Assembly using Siemens Process Simulate: A Feasibility Study. Procedia Manufacturing, 34, 986–994. https://doi.org/10.1016/j.promfg.2019.06.097

Bruynseels, K., Santoni de Sio, F., & van den Hoven, J. (2018). Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Frontiers in Genetics, 9, 31. https://doi.org/10.3389/fgene.2018.00031

Chen, Y. (2017). Integrated and intelligent manufacturing: Perspectives and enablers (Engineering, Ed.; Vol. 3, pp. 588–595) Engineering.

da Silva, A. F. C., de Oliveira Ribeiro, A., de Souza Cruz, B. S., de Almeida, C. P., Costa, K. A., & Sabbadini, F. S. (2022). Análise da integração da indústria 4.0 e economia circular para consolidação do conceito da remanufatura 4.0: um estudo bibliométrico. Research, Society and Development, 11(7), e9511729687-e9511729687.

Deng, M., Menassa, C. C., & Kamat, V. R. (2021). From BIM to digital twins: a systematic review of the evolution of intelligent building representations in the AEC-FM industry. Journal of Information Technology in Construction, 26, 58–83. https://doi.org/10.36680/j.itcon.2021.005

Ferligoj, A., Kronegger, L., Mali, F., Snijders, T. A. B., & Doreian, P. (2015). Scientific collaboration dynamics in a national scientific system. Scientometrics, 104(3), 985–1012. https://doi.org/10.1007/s11192-015-1585-7

Gong, R., Xue, J., Zhao, L., Zolotova, O., Ji, X., & Xu, Y. (2019). A Bibliometric Analysis of Green Supply Chain Management Based on the Web of Science (WOS) Platform. Sustainability, 11(12), 3459. https://doi.org/10.3390/su11123459

Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication: Vol. White Paper 1. NASA.

Hofmann, W., & Branding, F. (2019). Implementation of an IoT- and Cloud-based Digital Twin for Real-Time Decision Support in Port Operations. IFAC-PapersOnLine, 52(13), 2104–2109. https://doi.org/10.1016/j.ifacol.2019.11.516

Hou, L., Wu, S., Zhang, G. (Kevin), Tan, Y., & Wang, X. (2020). Literature Review of Digital Twins Applications in Construction Workforce Safety. Applied Sciences, 11(1), 339. https://doi.org/10.3390/app11010339

Hu, L., Nguyen, N.-T., Tao, W., Leu, M. C., Liu, X. F., Shahriar, M. R., & Al Sunny, S. M. N. (2018). Modeling of Cloud-Based Digital Twins for Smart Manufacturing with MT Connect. Procedia Manufacturing, 26, 1193–1203. https://doi.org/10.1016/j.promfg.2018.07.155

Hu, M., Zhong, Y., Xie, S., Lv, H., & Lv, Z. (2021). Fuzzy System Based Medical Image Processing for Brain Disease Prediction. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.714318

Huang, P., Kim, K., & Schermer, M. (2022). Mapping the Ethical Issues of Digital Twins for Personalised Healthcare Service (Preprint). Journal of Medical Internet Research. https://doi.org/10.2196/33081

Ivanov, D., & Dolgui, A. (2019). New disruption risk management perspectives in supply chains: digital twins, the ripple effect, and resileanness. IFAC-PapersOnLine, 52(13), 337–342. https://doi.org/10.1016/j.ifacol.2019.11.138

Kaewunruen, S., Sresakoolchai, J., Ma, W., & Phil-Ebosie, O. (2021). Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions. Sustainability, 13(4), 2051. https://doi.org/10.3390/su13042051

Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C., & Holmström, J. (2019). Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings. IEEE Access, 7, 147406–147419. https://doi.org/10.1109/ACCESS.2019.2946515

Khan, S., Arslan, T., & Ratnarajah, T. (2022). Digital Twin Perspective of Fourth Industrial and Healthcare Revolution. IEEE Access, 10, 25732–25754. https://doi.org/10.1109/access.2022.3156062.

Kuts, V., Modoni, G. E., Otto, T., Sacco, M., Tähemaa, T., Bondarenko, Y., & Wang, R. (2019). Synchronizing physical factory and its digital twin through an IIoT middleware: a case study. Proceedings of the Estonian Academy of Sciences, 68(4), 364. https://doi.org/10.3176/proc.2019.4.03

Lezzi, M., Lazoi, M., & Corallo, A. (2018). Cybersecurity for Industry 4.0 in the current literature: A reference framework. Computers in Industry, 103, 97–110. https://doi.org/10.1016/j.compind.2018.09.004

Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z., & Deen, M. J. (2019). A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access, 7, 49088–49101. https://doi.org/10.1109/access.2019.2909828

Macchi, M., Roda, I., Negri, E., & Fumagalli, L. (2018). Exploring the role of Digital Twin for Asset Lifecycle Management. IFAC-PapersOnLine, 51(11), 790–795. https://doi.org/10.1016/j.ifacol.2018.08.415

Madni, A., Madni, C., & Lucero, S. (2019). Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems, 7(1), 7. https://doi.org/10.3390/systems7010007

Mansoori, P. (2018). 50 years of Iranian clinical, biomedical, and public health research: a bibliometric analysis of the Web of Science Core Collection (1965-2014). Journal of Global Health, 8(2). https://doi.org/10.7189/jogh.08.020701

Mazhar Rathore, M., Shah, S. A., Shukla, D., Bentafat, E., & Bakiras, S. (2021). The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities. IEEE Access, 1–1. https://doi.org/10.1109/access.2021.3060863

Moshobane, M. C., Khoza, T. T., & Niassy, S. (2021). The period of insect research in the tropics: a bibliometric analysis. International Journal of Tropical Insect Science, 42(1), 989–998. https://doi.org/10.1007/s42690-021-00616-2

Negri, E., Ardakani, H. D., Cattaneo, L., Singh, J., Macchi, M., & Lee, J. (2019). A Digital Twin-based scheduling framework including Equipment Health Index and Genetic Algorithms. IFAC-PapersOnLine, 52(10), 43–48. https://doi.org/10.1016/j.ifacol.2019.10.024

Pang, J., Huang, Y., Xie, Z., Li, J., & Cai, Z. (2021). Collaborative city digital twin for the COVID-19 pandemic: A federated learning solution. Tsinghua Science and Technology, 26(5), 759–771. https://doi.org/10.26599/tst.2021.9010026

Pang, T. Y., Pelaez Restrepo, J. D., Cheng, C.-T., Yasin, A., Lim, H., & Miletic, M. (2021). Developing a Digital Twin and Digital Thread Framework for an “Industry 4.0” Shipyard. Applied Sciences, 11(3), 1097. https://doi.org/10.3390/app11031097

Pizzolato, C., Saxby, D. J., Palipana, D., Diamond, L. E., Barrett, R. S., Teng, Y. D., & Lloyd, D. G. (2019). Neuromusculoskeletal Modeling-Based Prostheses for Recovery After Spinal Cord Injury. Frontiers in Neurorobotics, 13. https://doi.org/10.3389/fnbot.2019.00097

Popa, E. O., van Hilten, M., Oosterkamp, E., & Bogaardt, M.-J. (2021). The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks. Life Sciences, Society and Policy, 17(1). https://doi.org/10.1186/s40504-021-00113-x

Qiao, Q., Wang, J., Ye, L., & Gao, R. X. (2019). Digital Twin for Machining Tool Condition Prediction. Procedia CIRP, 81, 1388–1393. https://doi.org/10.1016/j.procir.2019.04.049

Sarkar, A., Wang, H., Rahman, A., Memon, W. H., & Qian, L. (2022). A bibliometric analysis of sustainable agriculture: based on the Web of Science (WOS) platform. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-19632-x

Scharff, S. (2010). From Digital Twin to Improved Patient Experience. (Siemens Healthineers, Ed.) [Review of From Digital Twin to Improved Patient Experience.]. https://www.siemens-healthineers.com/news/mso-digitaltwin-mater.html

Schimanski, Pasetti Monizza, Marcher, & Matt. (2019). Pushing Digital Automation of Configure-to-Order Services in Small and Medium Enterprises of the Construction Equipment Industry: A Design Science Research Approach. Applied Sciences, 9(18), 3780. https://doi.org/10.3390/app9183780

Sepasgozar, S. M. E., Karimi, R., Shirowzhan, S., Mojtahedi, M., Ebrahimzadeh, S., & McCarthy, D. (2019). Delay Causes and Emerging Digital Tools: A Novel Model of Delay Analysis, Including Integrated Project Delivery and PMBOK. Buildings, 9(9), 191. https://doi.org/10.3390/buildings9090191

Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N., & Devine, D. (2021). Digital Twin: Origin to Future. Applied System Innovation, 4(2), 36. https://doi.org/10.3390/asi4020036

Soosaraei, M., Khasseh, A. A., Fakhar, M., & Hezarjaribi, H. Z. (2018). A decade bibliometric analysis of global research on leishmaniasis in Web of Science database. Annals of Medicine and Surgery, 26, 30–37. https://doi.org/10.1016/j.amsu.2017.12.014

Sweileh, W. M., Al-Jabi, S. W., Sawalha, A. F., & Zyoud, S. H. (2014). Bibliometric analysis of nutrition and dietetics research activity in Arab countries using ISI Web of Science database. SpringerPlus, 3(1). https://doi.org/10.1186/2193-1801-3-718

Talkhestani, B. A., Jazdi, N., Schlögl, W., & Weyrich, M. (2018). A concept in synchronization of virtual production system with real factory based on anchor-point method. Procedia CIRP, 67, 13–17. https://doi.org/10.1016/j.procir.2017.12.168

van Eck, N. J., & Waltman, L. (2009). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Voigt, I., Inojosa, H., Dillenseger, A., Haase, R., Akgün, K., & Ziemssen, T. (2021). Digital Twins for Multiple Sclerosis. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.669811

Vrabič, R., Erkoyuncu, J. A., Butala, P., & Roy, R. (2018). Digital twins: Understanding the added value of integrated models for through-life engineering services. Procedia Manufacturing, 16, 139–146. https://doi.org/10.1016/j.promfg.2018.10.167

Wagner, R., Schleich, B., Haefner, B., Kuhnle, A., Wartzack, S., & Lanza, G. (2019). Challenges and Potentials of Digital Twins and Industry 4.0 in Product Design and Production for High Performance Products. Procedia CIRP, 84, 88–93. https://doi.org/10.1016/j.procir.2019.04.219

Wan, Z., Dong, Y., Yu, Z., Lv, H., & Lv, Z. (2021). Semi-Supervised Support Vector Machine for Digital Twins Based Brain Image Fusion. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.705323

Zhang, C., Xu, W., Liu, J., Liu, Z., Zhou, Z., & Pham, D. T. (2019). A Reconfigurable Modeling Approach for Digital Twin-based Manufacturing System. Procedia CIRP, 83, 118–125. https://doi.org/10.1016/j.procir.2019.03.141

Zhou, M. Yan, J. Feng, D. (2019). Digital twin and its application to power grid online analysis. CSEE Journal of Power and Energy Systems. https://doi.org/10.17775/cseejpes.2018.01460

Zyoud, S. H., Waring, W. S., Al-Jabi, S. W., & Sweileh, W. M. (2017). Global cocaine intoxication research trends during 1975–2015: a bibliometric analysis of Web of Science publications. Substance Abuse Treatment, Prevention, and Policy, 12(1). https://doi.org/10.1186/s13011-017-0090-9

Downloads

Publicado

09/09/2022

Como Citar

RIBEIRO, A. de O. .; SABBADINI, F. S. .; COSTA, K. A. .; CRUZ, B. S. de S. . Uma análise bibliométrica da relação entre Gêmeos Digitais e Gestão em Saúde: com base na plataforma Web of Science (WoS). Research, Society and Development, [S. l.], v. 11, n. 12, p. e152111234270, 2022. DOI: 10.33448/rsd-v11i12.34270. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34270. Acesso em: 28 nov. 2024.

Edição

Seção

Engenharias