Bacillus cereus UFPEDA 1040B as a potential plant growth promoter: an in vitro study

Authors

DOI:

https://doi.org/10.33448/rsd-v11i12.34517

Keywords:

Rhizobacteria; Auxin; Organic Acids; Antagonism.

Abstract

The Brazilian northeastern semi-arid is a region composed of countless microorganisms adapted to extreme conditions, and to ensure their survival, they can produce several biomolecules and develop peculiar mechanisms. The use of microorganisms has been reported as a promising alternative for promoting plant growth through the production of several bioactive molecules, which can replace chemical agents that cause environmental problems. In this study, Bacillus sp. Ar 16 (UFPEDA), isolated from the rhizosphere of Aroeira (Schinus terebinthifolia) from the Caatinga biome, northeastern semi-arid region, was taxonomically characterized through biochemical tests, Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF) and 16S region rRNA such as Bacillus cereus UFPEDA 1060 B (99.86%). In vitro conditions, the B. cereus UFPEDA 1060B strain produced exopolysaccharide (EPS), cellulases, and phosphatases and presented maximum phosphate solubilization of 880 µg.mL -1 . Furthermore, the production of 3.96 to 4.06 µg.mL -1 of indole acetic acid (IAA) in a culture medium supplemented with 5 mM of L-tryptophan was evidenced. IAA and other organic acids were extracted and analyzed by High-Performance Liquid Chromatography (HPLC) at a retention time of 6.2. The studied strain has different mechanisms that can promote plant growth and is also capable of controlling the growth of Fusarium spp. and Colletotrichum spp. The effectiveness of the results presented by this strain demonstrate its biotechnological potential, which can bring benefits to sustainable agriculture with artifices that favor, in addition to plant growth, the cycling of nutrients.

References

Ali, B., Sabri, A. N., Ljung, K., & Hasnain, S. (2009). Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World Journal of Microbiology and Biotechnology, 25(3), 519- 526. https://doi.org/10.1007/s11274-008-9918-9.

Aloo, B. N., Makumba, B. A., & Mbega, E. R. (2019). The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, 219, 26-39. https://doi.org/10.1016/j.micres.2018.10.011

Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology letters, 32(11), 1559-1570. https://doi.org/10.1007/s10529-010-0347-0.

Banerjee, S., Palit, R., Sengupta, C., & Standing, D. (2010). Stress Induced Phosphate Solubilization by “Arthrobacter” Sp. and “Bacillus” Sp. Isolated from Tomato Rhizosphere. Australian Journal of Crop Science, 4(6), 378–383. Retrivied from https://search.informit.org/doi/10.3316/informit.414789554792811

Baron, S. (Ed.). (1996). Medical Microbiology. (4th ed.). University of Texas Medical Branch at Galveston.

Barton, L. J. (1948). Photometric method of phosphate rock analysis. Analytical chemistry, 20, 1068-1070.C.J. https://doi.org/10.1021/ac60023a024.

Batista, B. D. (2017). Promoção de crescimento vegetal por Bacillus sp. RZ2MS9: dos genes ao campo. Tese de Doutorado, Escola Superior de Agricultura Luiz de Quieroz, Universidade de São Paulo, Piracicaba. doi:10.11606/T.11.2017.tde-15082017-170543.

Campos, D. C., Acevedo, F., Morales, E., Aravena, J., Amiard, V., Jorquera, M. A., ... & Rubilar, M. (2014). Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules. World Journal of Microbiology and Biotechnology, 30(9), 2371-2378. https://doi.org/10.1007/s11274-014-1662-8.

Cappuccino, J., Sherman, N. (1992). Microbiology: a laboratory manual, tenth ed., Longman, New York.

Carrer Filho, R., Dianese, É. D., & Gomes daCunha, M. (2015). Suppression of Fusarium wilt in tomato plants by rhizobacteria from the Bacillus genus. Pesquisa Agropecuária Tropical, 45(3). http://dx.doi.org/10.1590/1983-40632015v4535397.

Chen, L., Shi, H., Heng, J., Wang, D., & Bian, K. (2019). Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiological research, 218, 41-48. https://doi.org/10.1016/j.micres.2018.10.002.

Da Silva, C. F., Vitorino, L. C., Soares, M. A., & Souchie, E. L. (2018). Multifunctional potential of endophytic and rhizospheric microbial isolates associated with Butia purpurascens roots for promoting plant growth. Antonie van Leeuwenhoek, 111(11), 2157-2174. https://doi.org/10.1007/s10482-018-1108-7.

De Moura, P. A., de Albuquerque Lima, T., Ferreira, M. R. A., Soares, L. A. L., de Souza Lima, G. M., Napoleão, T. H., ... & Paiva, P. M. G. (2021). The relevance of actinobacteria as sources of antioxidant compounds: Evaluation of Streptomyces isolates from rhizosphere collected at Brazilian Caatinga. In Microbial and Natural Macromolecules (pp. 401-418). Academic Press.https://doi.org/10.1016/B978-0-12-820084-1.00017-X.

Dey, R. K. K. P., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological research, 159(4), 371-394. https://doi.org/10.1016/j.micres.2004.08.004.

Dionisio, J. A., Pimentel, I. C., Signor, D., De Paula, A. M., Maceda, A., & Matanna, A. L. (2016). Guia prático de biologia do solo.

Ek-Ramos, M. J., Gomez-Flores, R., Orozco-Flores, A. A., Rodríguez-Padilla, C., González-Ochoa, G., & Tamez-Guerra, P. (2019). Bioactive products from plant-endophytic Gram-positive bacteria. Frontiers in microbiology, 10, 463. https://doi.org/10.3389/fmicb.2019.00463.

Ferreira, C. M., Soares, H. M., & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of the total environment, 682, 779- 799.https://doi.org/10.1016/j.scitotenv.2019.04.225.

Frank, A. C., Saldierna Guzmán, J. P., & Shay, J. E. (2017). Transmission of bacterial endophytes. Microorganisms, 5(4), 70. https://doi.org/10.3390/microorganisms5040070.

Garrity, G. M., & Stanley, J. T. (2001). Bergey’s Manual® of Systematic Bacteriology: Volume One The Archaea and the Deeply Branching and Phototrophic Bacteria. D. R. Boone, & R. W. Castenholz (Eds.). Springer New York.

Geddie, J. L., & Sutherland, I. W. (1993). Uptake of metals by bacterial polysaccharides. Journal of Applied Bacteriology, 74(4), 467-472. https://doi.org/10.1111/j.1365-2672.1993.tb05155.x.

Ghyselinck, J., Velivelli, S. L., Heylen, K., O’Herlihy, E., Franco, J., Rojas, M., ... & Prestwich, B. D. (2013). Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. Systematic and applied microbiology, 36(2), 116-127.. https://doi.org/10.1016/j.syapm.2012.11.007.

Hameeda, B., Reddy, Y., Rupela, O. P., Kumar, G. N., & Reddy, G. (2006). Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna. Current microbiology, 53(4), 298-302. https://doi.org/10.1007/s00284-006-0004-y.

Johnsen, H. R., & Krause, K. (2014). Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant tissue prints. International Journal of Molecular Sciences, 15(1), 830-838. https://doi.org/10.3390/ijms15010830.

Kaur, H., Kaur, J., & Gera, R. (2016). Plant growth promoting rhizobacteria: a boon to agriculture. Int J Cell Sci Biotechnol, 5, 17-22. E-ISSN: 2320-7574. https://www.researchgate.net/profile/Harshpreet-Kaur/publication/357885974_Plant_Growth_Promoting_Rhizobacteria_-A-Boon-to-Agriculture/links/61e59b79c5e31033759f6204/Plant-Growth-Promoting-Rhizobacteria-A-Boon-to-Agriculture.pdf

Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current microbiology, 57(5), 503-507. https://doi.org/10.1007/s00284-008- 9276-8.

Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., ... & de Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological research, 168(4), 183- 191. https://doi.org/10.1016/j.micres.2012.12.002.

Koneman, E. W., & Allen, S. (2008). Koneman. Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. Ed. médica panamericana.

Lanna Filho, R., Ferro, H. M., & Pinho, R. D. (2010). Controle biológico mediado por Bacillus subtilis. Revista Trópica: Ciências Agrárias e Biológicas, 4(2), 12-20. http://dx.doi.org/10.0000/rtcab.v4i2.145

Lima-Neto, R., Santos, C., Lima, N., Sampaio, P., Pais, C., & Neves, R. P. (2014). Application of MALDI-TOF MS for requalification of a Candida clinical isolates culture collection. Brazilian Journal of Microbiology, 45, 515-522. https://doi.org/10.1590/S1517-83822014005000044.

Lins, M. R. D. C. R. (2014). Seleção de actinobactérias da rizosfera da caatinga com potencial para promoção de crescimento vegetal (Master's thesis, Universidade Federal de Pernambuco). https://attena.ufpe.br/handle/123456789/12154

Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2016). Microbiologia de Brock-14ª Edição. Artmed Editora.

Malavolta, E., Vitti, G. C., & Oliveira, S. A. D. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações.

Marchioro, L. E. T. (2005). Produção de Ácido Indol Acético e derivados por bactérias fixadoras de nitrogênio. Curitiba: Universidade Federal do Paraná.

Marvasi, M., Visscher, P. T., & Casillas Martinez, L. (2010). Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS microbiology letters, 313(1), 1-9. https://doi.org/10.1111/j.1574- 6968.2010.02085.x.

Moreira, A. L. D. L., & Araújo, F. F. D. (2013). Bioprospecção de isolados de Bacillus spp. como potenciais promotores de crescimento de Eucalyptus urograndis. Revista Árvore, 37, 933-943. http://dx.doi.org/10.1590/S0100-67622013000500016.

Mumtaz, M. Z., Ahmad, M., Jamil, M., & Hussain, T. (2017). Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiological Research, 202, 51-60.https://doi.org/10.1016/j.micres.2017.06.001.

Nadeem, S. M., Ahmad, M., Naveed, M., Imran, M., Zahir, Z. A., & Crowley, D. E. (2016). Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Archives of microbiology, 198(4), 379-387.https://doi.org/10.1007/s00203-016-1197-5.

Nahas, E. (2002). Microrganismos do solo produtores de fosfatases em diferentes sistemas agrícolas. Bragantia, 61, 267-275. https://doi.org/10.1590/S0006-87052002000300008.

Nain, L., Yadav, R. C., & Saxena, J. (2012). Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi-arid deserts. Applied soil ecology, 59, 124- 135.https://doi.org/10.1016/j.apsoil.2011.08.001.

Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters, 170(1), 265-270.https://doi.org/10.1111/j.1574-6968.1999.tb13383.x.

Paulo, E. M., Vasconcelos, M. P., Oliveira, I. S., Affe, H. M. D. J., Nascimento, R., Melo, I. S. D., ... & Assis, S. A. D. (2012). An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology, 32, 710-714. http://dx.doi.org/10.1590/S0101-20612012005000094.

Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current opinion in biotechnology, 22(2), 187- 193.https://doi.org/10.1016/j.copbio.2010.12.003.

Prasad, R., Kumar, M., & Varma, A. (2015). Role of PGPR in soil fertility and plant health. In Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants (pp. 247-260). Springer, Cham. doi:10.1007/978-3-319-13401-7_12

Reinhold-Hurek, B., & Hurek, T. (2011). Living inside plants: bacterial endophytes. Current opinion in plant biology, 14(4), 435-443. https://doi.org/10.1016/j.pbi.2011.04.004.

Ribeiro, C. M., & Cardoso, E. J. B. N. (2012). Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiological Research, 167(2), 69-78. https://doi.org/10.1016/j.micres.2011.03.003.

Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in physiology, 8, 667. R. Radhakrishnan, A. Hashem, E.F. Abd_Allah,2017. https://doi.org/10.3389/fphys.2017.00667.

Rocha, F. Y. O., de Oliveira, C. M., da Silva, P. R. A., de Melo, L. H. V., do Carmo, M. G. F., & Baldani, J. I. (2017). Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. Lycopersici. Applied soil ecology, 120, 8-19. https://doi.org/10.1016/j.apsoil.2017.07.025.

Romeiro, R. D. S. (2007). Controle biológico de doenças de plantas: procedimentos. Universidade Federal de Viçosa.

Romero, D., De Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., ... & Pérez-García, A. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20(4), 430-440. https://doi.org/10.1094/MPMI-20-4-0430.

Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual, thirded. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 1-14. https://doi.org/10.1186/2193-1801-2-587.

Silambarasan, S., Logeswari, P., Cornejo, P., & Kannan, V. R. (2019). Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. International journal of biological macromolecules, 121, 55-62.https://doi.org/10.1016/j.ijbiomac.2018.10.016.

Sindhu, S. S., & Dadarwal, K. R. (2001). Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiological Research, 156(4), 353-358. https://doi.org/10.1078/0944-5013-00120.

Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS microbiology reviews, 31(4), 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x.

Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and environmental microbiology, 43(4), 777-780. https://doi.org/10.1128/aem.43.4.777-780.1982.

Trovão, D. M. D., Fernandes, P. D. Andrade, L. A. D., & Dantas Neto, J. (2007). Variações sazonais de aspectos fisiológicos de espécies da Caatinga. Revista Brasileira de Engenharia Agrícola e Ambiental, 11, 307-311. http://dx.doi.org/10.1590/S1415-43662007000300010.

Vafadar, F., Amooaghaie, R., & Otroshy, M. (2014). Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions, 9(1), 128-136. https://doi.org/10.1080/17429145.2013.779035.

Vimal, J., Venu, A., & Joseph, J. (2016). Isolation and identification of cellulose degrading bacteria and optimization of the cellulase production. Int J Res Biosciences, 5(3), 58-67. https://www.researchgate.net/profile/Joseph-Vimal/publication/317300472_Isolation_and_identification_of_cellulose_degrading_bacteria_and_optimization_of_the_cellulase_production/links/5930e465a6fdcc89e784a471/Isolation-and-identification-of-cellulose-degrading-bacteria-and-optimization-of-the-cellulase-production.pdf

Yuan, J., Raza, W., Shen, Q., & Huang, Q. (2012). Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Applied and environmental microbiology, 78(16), 5942-5944. https://doi.org/10.1128/AEM.01357-12.

Zouari, I., Jlaiel, L., Tounsi, S., & Trigui, M. (2016). Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biological Control, 100, 54-62. https://doi.org/10.1016/j.biocontrol.2016.05.012.

Downloads

Published

20/09/2022

How to Cite

LEMOS, A. C. A. .; SOUZA, A. S. e .; NASCIMENTO, P. H. do B.; LIMA-NETO, R. G. de; ARAÚJO, E. M. de; MARQUES, D. S. C. .; ANDRADE, E. R.; ARAÚJO, J. M. de; LIMA-GOMES, G. M. de S. . Bacillus cereus UFPEDA 1040B as a potential plant growth promoter: an in vitro study. Research, Society and Development, [S. l.], v. 11, n. 12, p. e449111234517, 2022. DOI: 10.33448/rsd-v11i12.34517. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34517. Acesso em: 25 nov. 2024.

Issue

Section

Agrarian and Biological Sciences