Evaluation of the soluble fraction of B100 biodiesel and S500 diesel in seawater using Experimental Design
DOI:
https://doi.org/10.33448/rsd-v11i12.35040Keywords:
Water-soluble fraction; Experimental design; Biodiesel; Diesel; TPH; Acute toxicity; Mysidopsis juniae.Abstract
Biodiesel is considered a clean and renewable energy source, however it is important to know the environmental impacts caused by the water-soluble fraction (WSF) of this fuel, in the event of a spill. The objective of this research was to evaluate the seawater-soluble fraction of biodiesel (B100) compared to diesel (S500). A factorial design was used to carry out the experiments and evaluate the WSF's, varying the type of fuel and the contact time between oil and water (O/W) from 1h to 24h. The mortality rate (%) of Mysidopsis juniae and the concentration of total hydrocarbons (TPH) were used as response variables. The results obtained demonstrate that diesel showed greater toxicity, with an average mortality rate of 98.4 % and TPH concentration of 475.8 µg/L in the water-soluble fraction. On the other hand, biodiesel did not present significant toxicity in the exposure of organisms, even after 24 hours of contact, but it can still cause risks in cases of spillage (average mortality rate of 15.0%). The empirical models obtained using the experimental design methodology were able to satisfactorily estimate the TPH concentrations and the mortality rate in the WSF, with precision above 99%, with correlation coefficients (R²) of 0.9963 and 0.9970. Pure biodiesel, due to its low lethality of organisms, biodegradable and from a renewable source, is an ecologically favorable proposal as a fuel, causing less impacts in cases of spillage in seawater.
References
ANP. (2021). Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis. Rio de Janeiro, RJ.
Albani, S. M., Borges, A. P., Martins, M. C., Restello, R. M., Câmara, F. D., Paroul, N., Cansian, R. L., & Mielniczki-Pereira, A. A, (2020).Standardization of glutathione reductase Measure in Aegla singularis (Anomura, Crustacea) using dccr experimental planning; Química Nova, 43(5), 607–12.
Anjos, R. B., Silva, W. P. N., Silva, A. A. D., Barros, S. R. S., & Carvalho Filho, E. V. de, (2021a) Use of statistical modeling for BTEX prediction in cases of crude oil spill in seawater. Environmental Technology (United Kingdom). V. 0(0), 1–9.
Anjos, R. B. dos, Silva, W. P. N., Silva, A. R. da, Medeiros, G. F. de, Silva, A. A. D., Barros, S. R. da S., & Carvalho Filho, E. V. (2021b). Models for BTEX evaluation in cases of oil spill on the sea, using Experimental Desing. Res. Soc. Dev. 10, e44610313555.
Anjos, R. B., Hilário, L. S., Juviniano, H. B. M., & Silva, D. R., (2020). Crude oil removal using Calotropis procera, BioRes. 15(3), 5246-5263.
Associação Brasileira de Normas Técnicas, ABNT (2017). NBR15308: Ecotoxicologia aquática -Toxicidade aguda - Método de ensaio com misidáceos (Crustacea). Associação Brasileira de Normas Técnicas
Barros Neto, B., Scarminio, I. S., & Bruns, R. E., Como fazer experimentos, (4ª ed.,) Editora Bookman: São Paulo, 2010.
Cavalcante, D. G., Da Silva, N. D., Marcarini, J. C., Mantovani, M. S., Marin-Morales, M. A., & Martinez, C. B. (2014). Cytotoxic, biochemical and genotoxic effects of biodiesel produced by different routes on ZFL cell line. Toxicology in Vitro, 28(6), 1117-1125.
Chang, S. E., Stone, J., & Demes, K., 2014. Consequences of oil spills: a review and framework for informing planning. Ecol. Soc. 19.
Da Cruz, A. C. S., Leite, M. B. N., Rodrigues, L. E. A., & Nascimento, I. A. (2012). Estimation of biodiesel cytotoxicity by using acid phosphatase as a biomarker of lysosomal integrity. Bulletin of environmental contamination and toxicology, 89(2), 219-224.
Dal’Col, L. A., Lambrecht, D. M., Sari, B. G., Krysczun, D. K., & Ubessi, C. (2020). Experimental planning for conducting experiments with cucumber, Hortic. Bras. 38 (2), Vitoria da Conquista Apr./Jun. 2020 Epub.
Hilário, L. S., Anjos, R. B., Juviniano, H. B. M., & Silva, D. R., (2019) Evaluation of thermally treated Calotropis procera fiber for the removal of petróleo on the water surface. Materials, 12(23), 3894.
Jung, D., J.-A. Kim, M.-S. Park, U. H., & Yim, K. Choi, (2017). Human health and ecological assessment programs for Hebei Spirit oil spill accident of 2007: status, lessons, and future challenges, Chemosphere 173, 180–189.
Khan, N., Warith, M. A., & Luk, G. (2012). A Comparison of Acute Toxicity of Biodiesel, Biodiesel Blends, and Diesel on Aquatic Organisms, Journal of the Air & Waste Management Association, 57:3, 286-296,
Leite, M. B. N. L., De Araujo, M. M. S., Nascimento, I. A., Da Cruz, A. C. S., Pereira, S. A., & Do Nascimento, N. C. (2011). Toxicity of water‐soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil. Environmental Toxicology and Chemistry, 30(4),
Müller, J. B., Melegari, S. P., Perreault, F., & Matias, W. G., (2019). Comparative assessment of acute and chronic ecotoxicity of water soluble fractions of diesel and biodiesel on Daphnia magna and Aliivibrio fischeri. Chemosphere 221, 640–646.
Nogueira, L., Rodrigues, A. C. F., Trídico, C. P., Fossa, C. E., & De Almeida, E. A., (2011a). Oxidative stress in Nile tilapia (Oreochromis niloticus) and armored catfish (Pterygoplichthys anisitsi) exposed to diesel oil. Environ. Monit. Assess. 180, 243–255.
Nogueira, L., Sanches, A. L. M., da Silva, D. G. H., Ferrizi, V. C., Moreira, A. B., & de Almeida, E. A., (2011b). Biochemical biomarkers in Nile tilapia (Oreochromis niloticus) after short-term exposure to diesel oil, pure biodiesel and biodiesel blends. Chemosphere 85, 97–105.
Nogueira, L., & Almeida, E. A. Potenciais riscos ambientais do biodiesel. Bioenergia: Desenvolvimento, Pesquisa e Inovação, Cultura Acadêmica Editora, São Paulo, SP (2012) , p. 1070.
Paul, J. H., Hollander, D., Coble, P., Daly, K. L., Murasko, S., English, D., Basso, J., Delaney, J., McDaniel, L., & Kovach, C. W. (2013), Toxicity and mutagenicity of gulf of Mexico waters during and after the deepwater horizon oil spill, Environ. Sci. Technol. 47, 9651–9659.
Pereira, T. M., Merçon, J., Passos, L. S., Coppo, G. C., Lopes, T. O. M., Cabral, D. S., Scherer, R., & Chippari-Gomes, A. R. (2018). Effects of the water-soluble fraction of diesel oil (WSD) on the fertilization and development of a sea urchin (Echinometra lucunter). Ecotox Environ Safe 162:59–62.
Rengasamy, R. S., Praba, D., & Karan, C., (2011). Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J. Hazard. Mater. 2011, 186, 526–532.
Saeed, T., Ali, Lulwa, N., Al-Bloushi, A., Al-Hashash, H., Al-Bahloul, M., Al-Khabbaz, A., & Ali, S. G. (2013). Photodegradation of Volatile Organic Compounds in the Water-Soluble Fraction of Kuwait Crude Oil in Seawater: Effect of Environmental Factors. Water Air and Soil Pollution, 224(6):1584.
Santana, D., Perina, F., Lourenço, R., Silva, J., Buruaem, L., & Abessa, D., (2021). Levels of hydrocarbons and toxicity of water-soluble fractions of maritime fuels on neotropical invertebrates. Ecotoxicology. 30. 10.1007/s10646-021-02486-3.
Salinas,W. S., Gómez, C., Cordero-E., B., Luque, P., & Guerra, G., (2020). Effects of the water-soluble fraction of the mixture fuel oil/diesel on the microalgae Dunaliella tertiolecta through growth. Environmental Science and Pollution Research. 27. 1-13.
Simonato, J. D., Guedes, C. L. B., & Martinez, C. B. R. (2008). Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicology and Environmental Safety, 69, 112–120.
USEPA, United States Environmental Protection Agency. "Method 8015D (SW-846): Nonhalogenated organics using GC/FID" Revision 4, June 2003. Washington, DC.
USEPA, United States Environmental Protection Agency. "Method 3535A (SW-846): Solid-Phase Extraction (SPE),” Revision 1, February 2007. Washington, DC.
Zengel S., Montague, C. L., Pennings, S. C., Powers, S. P., Steinhoff, M., Fricano, G., Schlemme, C., Zhang, M., Oehrig, J., Nixon, Z., Rouhani, S. & Michel, J. (2016), Impacts of the deepwater horizon oil spill on salt marsh periwinkles (Littoraria irrorata), Environ. Sci. Technol. 50 643–652.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Letícia Milena Gomes da Silva; Ingrid de Castro dos Santos Oliveira; Maíra Rachel Gerônimo de França; Raoni Batista dos Anjos; Larissa Sobral Hilário; Aécia Seleide Dantas dos Anjos; Amanda Duarte Gondim; Djalma Ribeiro da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.