Carbapenem resistance in non-carbapenemase-producing Pseudomonas aeruginosa strains: the role importance of OprD and AmpC

Authors

DOI:

https://doi.org/10.33448/rsd-v11i13.35164

Keywords:

Pseudomonas aeruginosa; Carbapenems; Resistance; OprD; AmpC.

Abstract

Carbapenem-resistance is a great challenge for antimicrobial therapy in Pseudomonas aeruginosa multidrug-resistant infections, as it reduces therapeutic options. This study investigated carbapenem-resistance mechanisms in six strains of non-carbapenemase-producing P. aeruginosa. Minimal inhibitory concentrations for imipenem and meropenem were determined by epsilometric test and broth microdilution. Mutations in the oprD gene were investigated by PCR, followed by sequencing. Transcriptional levels of oprD, ampC, and efflux pumps genes were analysed through RT-qPCR. Detection of efflux and AmpC activity was assessed by MIC reduction in the presence of the inhibitors: PAβN and cloxacillin, respectively. Resistant strains showed moderate levels of resistance for the evaluated carbapenems. Sequencing of oprD gene revealed similar mutation patterns in strains of the same Sequence Type -ST. A premature stop codon was detected only in the resistant strains of ST2236. Indel mutations were found in the oprD gene of ST2237 strains. Failure to detect oprD transcripts by RT-qPCR further confirms the absence of porin on ST2237 strains. ST2236 strains showed low transcriptional levels for oprD. MexXY-OprM was the only efflux system overexpressed in resistant strains. However, no efflux and AmpC activity was detected. High transcriptional levels of ampC were found in 50% of non-induced resistant strains. All imipem-induced resistant strains showed an increase in ampC expression (>102 - 103 X). It was concluded that the reduction and/or loss of OprD associated with AmpC overexpression is probably the main carbapenem-resistance mechanism in the evaluated strains.

References

Berrazeg, M., Jeannot, K., Ntsogo Enguéné, V. Y., Broutin, I., Loeffert, S., Fournier, D., & Plésiat, P. (2015). Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Antimicrobial agents and chemotherapy, 59(10), 6248-6255.

Cabot, G., Ocampo-Sosa, A. A., Tubau, F., Macia, M. D., Rodríguez, C., Moya, B., Zamorano, L., Suaréz, C., Peña, C., Martinéz-Martinéz, L., Oliver, A. & Network for Research in Infectious Diseases (REIPI) (2011). Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: prevalence and impact on resistance in a Spanish multicenter study. Antimicrob Agents Chemother, 55(5), 1906-1911.

Castanheira, M., Deshpande, L. M., Costello, A., Davies, T. A., & Jones, R. N. (2014). Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and Mediterranean countries. J Antimicrob Chemother, 69(7), 1804-1814.

Chalhoub, H., Sáenz, Y., Rodriguez-Villalobos, H., Denis, O., Kahl, B. C., Tulkens, P. M., & Van Bambeke, F. (2016). High-level resistance to meropenem in clinical isolates of Pseudomonas aeruginosa in the absence of carbapenemases: role of active efflux and porin alterations. Int J Antimicrob Agents, 48(6), 740-743.

Codjoe, F. S., & Donkor, E. S. (2017). Carbapenem Resistance: A Review. Med Sci (Basel), 6(1).

de Almeida Silva, K. C., Calomino, M. A., Deutsch, G., de Castilho, S. R., de Paula, G. R., Esper, L. M., & Teixeira, L. A. (2017). Molecular characterization of multidrug-resistant (MDR) Pseudomonas aeruginosa isolated in a burn center. Burns, 43(1), 137-143.

de Oliveira Santos, I. C., Pereira de Andrade, N. F., da Conceição Neto, O. C., da Costa, B. S., de Andrade Marques, E., Rocha-de-Souza, C. M., Asensi, M. D., & D'Alincourt Carvalho-Assef, A. P. (2019). Epidemiology and antibiotic resistance trends in clinical isolates of Pseudomonas aeruginosa from Rio de janeiro - Brazil: Importance of mutational mechanisms over the years (1995-2015). Infect Genet Evol, 73, 411-415.

De Rosa, A., Mutters, N. T., Mastroianni, C. M., Kaiser, S. J., & Günther, F. (2019). Distribution of carbapenem resistance mechanisms in clinical isolates of XDR Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis, 38(8), 1547-1552.

Deutsch, G., Bokehi, L. C., Silva, A. E. G. P. R., Guimarães Junior, L. M., Rodrigues, R., Esper, L. M. R., Gonzalez, A. G. M., de Paula, G. R., de Castilho, S. R., & Teixeira, L. A. (2016). Balneotherapy is a potential risk factor for pseudomonas aeruginosa colonization. Brazilian Journal of Pharmaceutical Sciences, 52(1), 125-132.

Eren, E., Parkin, J., Adelanwa, A., Cheneke, B., Movileanu, L., Khalid, S., & van den Berg, B. (2013). Toward understanding the outer membrane uptake of small molecules by Pseudomonas aeruginosa. J Biol Chem, 288(17), 12042-12053.

Eren, E., Vijayaraghavan, J., Liu, J., Cheneke, B. R., Touw, D. S., Lepore, B. W., Indic, M., Movileanu, L., & van den Berg, B. (2012). Substrate specificity within a family of outer membrane carboxylate channels. PLoS Biol, 10(1), e1001242.

Feng, W., Huang, Q., Wang, Y., Yuan, Q., Li, X., Xia, P., & Sun, F. (2021). Changes in the resistance and epidemiological characteristics of Pseudomonas aeruginosa during a ten-year period. J Microbiol Immunol Infect, 54(2), 261-266.

Goli, H. R., Nahaei, M. R., Rezaee, M. A., Hasani, A., Kafil, H. S., Aghazadeh, M., Nikbakht, M., & Khalili, Y. (2018). Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and Intensive Care Unit isolates of Pseudomonas aeruginosa. J Infect Public Health, 11(3), 364-372.

Horner, C., Mushtaq, S., Livermore, D. M., & BSAC Resistance Surveillance Standing Committee. (2019). Potentiation of imipenem by relebactam for Pseudomonas aeruginosa from bacteraemia and respiratory infections. J Antimicrob Chemother, 74(7), 1940-1944.

Ito, A., Nishikawa, T., Ota, M., Ito-Horiyama, T., Ishibashi, N., Sato, T., Masakatsu, T., & Yamano, Y. (2018). Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae. The Journal of antimicrobial chemotherapy, 73(11), 3049-3052.

Kaiser, S. J., Mutters, N. T., DeRosa, A., Ewers, C., Frank, U., & Günther, F. (2017). Determinants for persistence of Pseudomonas aeruginosa in hospitals: interplay between resistance, virulence and biofilm formation. Eur J Clin Microbiol Infect Dis, 36, 243-253.

Khalili, Y., Yekani, M., Goli, H. R., & Memar, M. Y. (2019). Characterization of carbapenem-resistant but cephalosporin-susceptible Pseudomonas aeruginosa. Acta Microbiol Immunol Hung, 66(4), 529-540.

Kumari, H., Balasubramanian, D., Zincke, D., & Mathee, K. (2014). Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics. J Med Microbiol, 63(Pt 4), 544-555.

Li, H., Luo, Y. F., Williams, B. J., Blackwell, T. S., & Xie, C. M. (2012). Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol, 302(2), 63-68.

Liu, H., Kong, W., Yang, W., Chen, G., Liang, H., & Zhang, Y. (2018). Multilocus sequence typing and variations in the. Infect Drug Resist, 11, 45-54.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408.

Nordmann, P., & Poirel, L. (2019). Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin Infect Dis, 69(Suppl 7), S521-S528.

Ocampo-Sosa, A. A., Cabot, G., Rodríguez, C., Roman, E., Tubau, F., Macia, M. D., Moya, B., Zamorano, L., Suaréz, C., Peña, C., Domínguez, M. A., Moncalián, G., Oliver, A., & Network for Research in Infectious Diseases (REIPI). (2012). Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother, 56(4), 1703-1713.

Pacheco, T., Bustos-Cruz, R. H., Abril, D., Arias, S., Uribe, L., Rincón, J., García, J-C., & Escobar-Perez, J. (2019). Coharboring. Antibiotics (Basel), 8(3), 98.

Pereira, A.S., Shitsuka, D. M., Parreira, F.J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Petrova, A., Feodorova, Y., Miteva-Katrandzhieva, T., Petrov, M., & Murdjeva, M. (2019). First detected OXA-50 carbapenem-resistant clinical isolates Pseudomonas aeruginosa from Bulgaria and interplay between the expression of main efflux pumps, OprD and intrinsic AmpC. J Med Microbiol, 68(12), 1723-1731.

Pragasam, A. K., Raghanivedha, M., Anandan, S., & Veeraraghavan, B. (2016). Characterization of Pseudomonas aeruginosa with discrepant carbapenem susceptibility profile. Ann Clin Microbiol Antimicrob, 15, 12.

Quale, J., Bratu, S., Gupta, J., & Landman, D. (2006). Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother, 50(5), 1633-1641.

Rodríguez, M. C., Ruiz del Castillo, B., Rodríguez-Mirones, C., Romo, M., Monteagudo, I., & Martínez-Martínez, L. (2010). Molecular characterization of Pseudomonas aeruginosa isolates in Cantabria, Spain, producing VIM-2 metallo-beta-lactamase. Enferm Infecc Microbiol Clin, 28(2), 99-103.

Rodríguez-Martínez, J. M., Poirel, L., & Nordmann, P. (2009). Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 53(5), 1766-1771.

Tamma, P. D., Doi, Y., Bonomo, R. A., Johnson, J. K., Simner, P. J., & Group, A. R. L. (2019). A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World. Clin Infect Dis, 69(8), 1446-1455.

Wi, Y. M., Greenwood-Quaintance, K. E., Schuetz, A. N., Ko, K. S., Peck, K. R., Song, J. H., & Patel, R. (2018). Activity of Ceftolozane-Tazobactam against Carbapenem-Resistant, Non-Carbapenemase-Producing Pseudomonas aeruginosa and Associated Resistance Mechanisms. Antimicrob Agents Chemother, 62(1).

Xu, C., Wang, D., Zhang, X., Liu, H., Zhu, G., Wang, T., Cheng, Z; Wu, W., Bai, F., & Jin, Y. (2020). Mechanisms for Rapid Evolution of Carbapenem Resistance in a Clinical Isolate of Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 1390.

Downloads

Published

07/10/2022

How to Cite

SILVA, K. de C. F. de A.; TEIXEIRA, F. L.; PAIVA , D. L. F.; MARTINS , I. R.; DARDENNE , L. E.; CUSTÓDIO, F. L.; GUEDES , I. A.; PAULA, G. R. de; TEIXEIRA, L. A. Carbapenem resistance in non-carbapenemase-producing Pseudomonas aeruginosa strains: the role importance of OprD and AmpC. Research, Society and Development, [S. l.], v. 11, n. 13, p. e287111335164, 2022. DOI: 10.33448/rsd-v11i13.35164. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35164. Acesso em: 2 jan. 2025.

Issue

Section

Health Sciences