Chemical characterization and anti-inflammatory and antioxidant potential of fruits of Eugenia candolleana DC

Authors

DOI:

https://doi.org/10.33448/rsd-v11i13.35576

Keywords:

TNF-α; Cytokines; Anti-inflammatory; Seed flour; Vitamin; Quercetin.

Abstract

The aim of this study was to present a comprehensive evaluation of the chemical composition, anti-inflammatory and antioxidant activities of the pulp and seeds of Eugenia candolleana fruits collected at two stages of maturation. The results showed that fruits are a good source of vitamins and minerals such as thiamine and riboflavin, iron, phosphorus, magnesium, manganese, potassium and zinc, besides high amounts of protein and dietary fiber. The fruits showed a higher proportion of unsaturated fatty acids, with a predominance of linoleic acid in all samples. The seeds presented a significantly higher content of phenolic and tannins than pulp, however, anthocyanins were found exclusively in the pulp and skin of the fruits. Maturation affected the composition of phenolics where the mature stage presented significantly fewer phenolic compounds. Quercetin, pyrogallol and gallic acid were the main compounds identified in the pulp and seeds. Both pulp and seeds presented potential antioxidant and anti-inflammatory activities, however, the seeds have significantly higher activity. The seed extracts significantly reduced the production of nitric oxide and the cytokines IL-6 and TNF-α in macrophages, highlighting a potential anti-inflammatory activity. The fruits can be included in diets as a strategy to improve the diversity of food supply, in addition, the seed flour can be used as a potential food supplement, besides valuing agro-industrial by-products.

References

AOAC, 2016. AOAC: Official Methods of Analysis.

Arredondo, M., & Núñez, M. T. (2005). Iron and copper metabolism. Molecular Aspects of Medicine, 26, 313–327.10.1016/j.mam.2005.07.010

Aschner, M., & Erikson, K. (2017). Manganese. Advances in Nutrition, 8, 520–521.10.3945/an.117.015305

Azab, A., Nassar, A., & Azab, A. N. (2016). Anti-Inflammatory Activity of Natural Products. Molecules, 21(10), 1321. https://doi.org/10.3390/molecules21101321

Bagetti, M., Facco, E. M. P., Piccolo, J., Hirsch, G. E., Rodriguez-Amaya, D., Kobori, C. N., Vizzotto, M., & Emanuelli, T. (2011). Physicochemical characterization and antioxidant capacity of pitanga fruits (Eugenia uniflora L.). Ciência e Tecnologia de Alimentos, 31, 147–154.10.1590/S0101-20612011000100021

Barbosa, S., Pardo-Mates, N., Hidalgo-Serrano, M., Saurina, J., Puignou, L., & Núñez, O. (2018). Detection and Quantitation of Frauds in the Authentication of Cranberry-Based Extracts by UHPLC-HRMS (Orbitrap) Polyphenolic Profiling and Multivariate Calibration Methods. Journal of Agricultural and Food Chemistry, 66, 9353–9365.10.1021/acs.jafc.8b02855

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.10.1139/o59-099

de Moura, F. B. R., Ferreira, B. A., Muniz, E. H., Justino, A. B., Gabriela Silva, A. G., Ribeiro, R. I. M. de A., Dantas, N. O., Ribeiro, D. L., Araújo, F. de A., Espindola, F. S., Silva, A. C. A., & Tomiosso, T. C. (2022). Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites. International Journal of Pharmaceutics, 617, 121620.10.1016/j.ijpharm.2022.121620

DeLoughery, T. G., (2017). Iron Deficiency Anemia. Medical Clinics of North America, 101, 319–332.10.1016/j.mcna.2016.09.004

Evans, C. E. L., (2020). Dietary fibre and cardiovascular health: a review of current evidence and policy. Proceedings of the Nutrition Society, 79, 61–67.10.1017/S0029665119000673

Ferrer-Gallego, R., García-Marino, M., Hernández-Hierro, J. M., Rivas-Gonzalo, J. C., & Escribano-Bailón, M. T. (2010). Statistical correlation between flavanolic composition, colour and sensorial parameters in grape seed during ripening. Analytica Chimica Acta, 660, 22–28.10.1016/j.aca.2009.09.039

Freire, D. R. G. C., Cassiano, C. Z. da C., Soares, K. L., Lemos, M. F., Pimentel-Schmitt, E. F., Fronza, M., Endringer, D. C., & Scherer, R. (2022). Cancer chemopreventive and antioxidant activities of seed, skin, and pulp of Maximo hybrid grapes (IAC 138-22) at five different ripening stages. Ciência Rural, 52 (3).10.1590/0103-8478cr20200962

Gibson, R. S., (2007). The role of diet- and host-related factors in nutrient bioavailability and thus in nutrient-based dietary requirement estimates. Food and Nutrition Bulletin, 28, S77-100.10.1177/15648265070281S108

Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Current Protocols in Food Analytical Chemistry, 00, F1.2.1-F1.2.13.10.1002/0471142913.faf0102s00

Gonçalves, A. E. D. S. S., Lajolo, F. M., & Genovese, M. I. (2010). Chemical composition and antioxidant/antidiabetic potential of Brazilian native fruits and commercial frozen pulps. Journal of Agricultural and Food Chemistry, 58, 4666–4674.10.1021/jf903875u

Guss, K. L., Pavanni, S., Prati, B., Dazzi, L., de Oliveira, J. P., Nogueira, B. V., Pereira, T. M. C., Fronza, M., Endringer, D. C., & Scherer, R. (2017). Ultrasound-assisted extraction of Achyrocline satureioides prevents contrast-induced nephropathy in mice. Ultrasonics Sonochemistry, 37, 368–374.10.1016/j.ultsonch.2017.01.035

Infante, J., Rosalen, P. L., Lazarini, J. G., Franchin, M., & Alencar, S. M. (2016). Antioxidant and Anti-Inflammatory Activities of Unexplored Brazilian Native Fruits. PLoS ONE, 11, e0152974.10.1371/journal.pone.0152974

Institute of Medicine. (Ed.), 2006. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. The National Academies Press., Washington, DC.

Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., & Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 25, 11–24.10.1007/s10787-017-0309-4

Joseph, J. D., & Ackman, R. G. (1992). Capillary column gas chromatographic method for analysis of encapsulated fish oils and fish oil ethyl esters: Collaborative study. Journal of AOAC International, 75, 488–506.

Kennedy, D. O., (2016). B Vitamins and the Brain: Mechanisms, Dose and Efficacy-A Review. Nutrients, 8(2), 68. https://doi.org/10.3390/nu8020068

Krepsky, P. B., Isidório, R. G., de Souza Filho, J. D., Côrtes, S. F., & Braga, F. C. (2012). Chemical composition and vasodilatation induced by Cuphea carthagenensis preparations. Phytomedicine, 19, 953–957.10.1016/j.phymed.2012.05.011

Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., Liu, H., & Yin, Y. (2016). Quercetin, inflammation and immunity. Nutrients, 8, 167.10.3390/nu8030167

Man, M. Q., Wakefield, J. S., Mauro, T. M., & Elias, P. M. (2022). Regulatory role of nitric oxide in cutaneous inflammation. Inflammation, 45, 949–964.10.1007/s10753-021-01615-8

Marques, F. M., Figueira, M. M., Schmitt, E. F. P., Kondratyuk, T. P., Endringer, D. C., Scherer, R., & Fronza, M. (2019). In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology, 27, 281–289.10.1007/s10787-018-0483-z

Martin, C. A., Almeida, V. V. de, Ruiz, M. R., Visentainer, J. E. L., Matshushita, M., Souza, N. E., & Visentainer, J. V., 2006. Ácidos graxos poliinsaturados ômega-3 e ômega-6: importância e ocorrência em alimentos. Revista de Nutrição. 19, 761–770.10.1590/S1415-52732006000600011

Mehta, A. K., Gracias, D. T., & Croft, M. (2018). TNF activity and T cells. Cytokine, 101, 14–18.10.1016/j.cyto.2016.08.003

Milanezi, F. G., Meireles, L. M., de Christo Scherer, M. M., de Oliveira, J. P., da Silva, A. R., de Araujo, M. L., Endringer, D. C., Fronza, M., Guimarães, M. C. C., & Scherer, R. (2019). Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharmaceutical Journal, 27, 968–974.10.1016/j.jsps.2019.07.005

Mosmann, T., (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.10.1016/0022-1759(83)90303-4

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237.10.1016/s0891-5849(98)00315-3

Riches, E., (2009). The rapid, simultaneous analysis of 12 water-soluble vitamin compounds - Waters application note 720003052EN.

Scherer, M. M. de C., Marques, F. M., Figueira, M. M., Peisino, M. C. O., Schmitt, E. F. P., Kondratyuk, T. P., Endringer, D. C., Scherer, R., & Fronza, M. (2019). Wound healing activity of terpinolene and α-phellandrene by attenuating inflammation and oxidative stress in vitro. Journal of Tissue Viability, 28, 94–99.10.1016/j.jtv.2019.02.003

Scherer, R., & Godoy, H. T. (2009). Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112, 654–658.10.1016/j.foodchem.2008.06.026

Scherer, R., Rybka, A. C. P., & Godoy, H. T. (2008). Determinação simultânea dos ácidos orgânicos tartárico, málico, ascórbico e cítrico em polpas de acerola, açaí e caju e avaliação da estabilidade em sucos de caju. Química Nova, 31, 1137–1140.10.1590/S0100-40422008000500039

Schmidt, H. de O., Rockett, F. C., Pagno, C. H., Possa, J., Assis, R. Q., de Oliveira, V. R., da Silva, V. L., Flôres, S. H., & Rios, A. de O. (2019). Vitamin and bioactive compound diversity of seven fruit species from south Brazil. Journal of the Science of Food and Agriculture, 99, 3307–3317.10.1002/jsfa.9544

Shaman, A. M., & Kowalski, S. R. (2016). Hyperphosphatemia Management in Patients with Chronic Kidney Disease. Saudi Pharmaceutical Journal, 24, 494–505.10.1016/j.jsps.2015.01.009

Smith, T. J., Johnson, C. R., Koshy, R., Hess, S. Y., Qureshi, U. A., Mynak, M. L., & Fischer, P. R. (2021). Thiamine deficiency disorders: a clinical perspective. Annals of the New York Academy of Sciences, 1498, 9–28.10.1111/nyas.14536

Suzumura, K., Yasuhara, M., & Narita, H. (1999). Superoxide anion scavenging properties of fluvastatin and its metabolites. Chemical and Pharmaceutical Bulletin. 47, 1477–1480.

Teixeira, L. de L., Bertoldi, F. C., Lajolo, F. M., & Hassimotto, N. M. A. (2015). Identification of Ellagitannins and Flavonoids from Eugenia brasilienses Lam. (Grumixama) by HPLC-ESI-MS/MS. Journal of Agricultural and Food Chemistry, 63, 5417–5427.10.1021/acs.jafc.5b01195

Thakur, K., Tomar, S. K., Singh, A. K., Mandal, S., & Arora, S. (2017). Riboflavin and health: A review of recent human research. Critical Reviews in Food Science and Nutrition, 57, 3650–3660.10.1080/10408398.2016.1145104

Downloads

Published

11/10/2022

How to Cite

SOARES, K. L. .; NÚÑEZ, N.; Núñez O.; BOGUSZ JUNIOR, S.; FRONZA, M.; SCHERER, R. Chemical characterization and anti-inflammatory and antioxidant potential of fruits of Eugenia candolleana DC. Research, Society and Development, [S. l.], v. 11, n. 13, p. e425111335576, 2022. DOI: 10.33448/rsd-v11i13.35576. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35576. Acesso em: 20 nov. 2024.

Issue

Section

Agrarian and Biological Sciences