Sensitivity of corn plants to dicamba and triclopyr herbicides

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36255

Keywords:

Corn phenological phases; Grain yield; Drift; Auxinic herbicides.

Abstract

The displacement of auxinic herbicides to the non-target site results in agronomic and environmental damages. The objective of this research was to evaluate the effects of doses of the herbicides dicamba and triclopyr applied in the phenological phases V2, V4 and V8 on the corn crop. The treatments were arranged in split plots in a 3x5 arrangement. The herbicide applications ocorred in three maize phenological phases (V2, V4 and V8) and were tested five doses of each herbicide (0; 4.8; 24; 48; 96 g ae. ha-1). The doses of dicamba applied in the V4 phase of the maize crop caused injuries of up to 16.5% at 7 days after application (DAA), with subsequent recovery at 28 DAA. In the phenological phases V2 and V8, the doses of dicamba did not cause damage and did not affect the corn grain yield. For triclopyr, maize plants were more sensitive when the herbicide was applied at V4, with a linear increase with increasing doses. At 21 DAA, symptoms were 50% phytotoxic, but with partial recovery at 28 DAA. Triclopyr applied in phases V2 and V4 promoted a reduction in corn productivity in relation to the application made in V8. The triclopyr dose of 4.8 g a.e ha-1 promoted hormesis effect in corn, with an increase in grain yield in relation to the other doses applied.

References

AGROFIT. Sistema de agrotóxicos fitossanitários. (2021). http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons.

Anagnostopoulos, C., Stasinopoulou, P., Kanatas, P., & Travlos, I. (2020). Differences in metabolism of three Conyza species to herbicides glyphosate and triclopyr revealed by LC-MS/MS. Chilean Journal of Agricultural Research, 80(1), 100-107.

BASF Corporation. 2017. Engenia specimen herbicide product label. Reg. no. 7969-345.

Belz, R. G., Farooq, M. B., & Wagner, J. (2018). Does selective hormesis impact herbicide resistance evolution in weeds? ACCase‐resistant populations of Alopecurus myosuroides Huds. as a case study. Pest Management Science, 74(8), 1880-1891.

Bradley, K. (2017). A final report on dicamba-injured soybean acres. Integrated Pest and Crop Manage. 27: 2.

Busi, R., Goggin, D. E., Heap, I. M., Horak, M. J., Jugulam, M., Masters, R. A., & Wright, T. R. (2018). Weed resistance to synthetic auxin herbicides. Pest Management Science, 74(10), 2265-2276.

Brochado, M. G. S., Mielke, K. C., de Paula, D. F., Laube, A. F. S., Alcántara-de la Cruz, R., Gonzatto, M. P., & Mendes, K. F. (2022). Impacts of dicamba and 2,4-D drift on ‘Ponkan’mandarin seedlings, soil microbiota and Amaranthus retroflexus. Journal of Hazardous Materials Advances, 6, 100084.

Cantu, R. M., Albrecht, L. P., Albrecht, A. J., Silva, A. F., Danilussi, M. T., & Lorenzetti, J. B. (2021). Herbicide alternative for Conyza sumatrensis control in pre-planting in no-till soybeans. Advances in Weed Science, 39: e2021000025

Cedergreen, N., Streibig, J. C., Kudsk, P., Mathiassen, S. K., & Duke, S. O. (2007). The occurrence of hormesis in plants and algae. Dose-response, 5(2), 150-162.

Dintelmann, B. R., Warmund, M. R., Bish, M. D., & Bradley, K. W. (2020). Investigations of the sensitivity of ornamental, fruit, and nut plant species to driftable rates of 2,4-D and dicamba. Weed Technology, 34(3), 331-341.

Egan, J. F., & Mortensen, D. A. (2012). Quantifying vapor drift of dicamba herbicides applied to soybean. Environmental Toxicology and Chemistry, 31(5), 1023-1031.

Fernandes, G., Aparicio, V. C., Bastos, M. C., De Gerónimo, E., Labanowski, J., Prestes, O. D., & Dos Santos, D. R. (2019). Indiscriminate use of glyphosate impregnates river epilithic biofilms in southern Brazil. Science of the Total Environment, 651, 1377-1387.

Ferraz, W. J., Pass, R. L. P. T., Muller, A. L., Gerhardt, K. L., Brustolin, D. B., Hubner, R., & Francisco, C. A. (2020). Aplicação de diferentes herbicidas para o controle de Conyza spp. resistentes ao glyphosate. Revista Cultivando o Saber, 13(2), 1-8.

Foster, M. R., & Griffin, J. L. (2018). Injury criteria associated with soybean exposure to dicamba. Weed Technology, 32(5), 608-617.

Frans, R. E. Measuring plant response. In: Wilkinson, R.E. (Ed.). Research methods in weed science [S.l.]: Southern Weed Science Society, 1972. p.28-41.

Gazola, J. G., Barbieri, G. F., Piasecki, C., Mazon, A. S., & Agostinetto, D. (2021). Chemical control of wild radish and volunteer EnlistTM soybean and selectivity to wheat crop. Revista Brasileira de Ciências Agrárias, 16(3), e413.

Griffin, J. L., Bauerle, M. J., Stephenson, D. O., Miller, D. K., & Boudreaux, J. M. (2013). Soybean response to dicamba applied at vegetative and reproductive growth stages. Weed Technology, 27(4), 696-703.

Hatterman-Valenti, H., Endres, G., Jenks, B., Ostlie, M., Reinhardt, T., Robinson, A., & Zollinger, R. (2017). Defining glyphosate and dicamba drift injury to dry edible pea, dry edible bean, and potato. Hort Technology, 27(4), 502-509.

Heap, I. The International Herbicide-Resistant Weed Database. (2022). www.weedscience.org.

Joseph, D. D., Marshall, M. W., & Sanders, C. H. (2018). Efficacy of 2, 4-D, dicamba, glufosinate and glyphosate combinations on selected broadleaf weed heights. American Journal of Plant Sciences, 9(6), 1321-1333.

Kruger, G. R., Davis, V. M., Weller, S. C., & Johnson, W. G. (2010). Control of horseweed (Conyza canadensis) with growth regulator herbicides. Weed Technology, 24(4), 425-429.

Mortensen, D. A., Egan, J. F., Maxwell, B. D., Ryan, M. R., & Smith, R. G. (2012). Navigating a critical juncture for sustainable weed management. BioScience, 62(1), 75-84.

Patton, A. J., Weisenberger, D. V., & Liu, W. (2020). Efficacy of triclopyr and synthetic auxin herbicide mixtures for common blue violet (Viola sororia) control. Weed Technology, 34(4), 475-481.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. (1ª. ed.) –Santa Maria, RS: UFSM, NTE.

Silva, D. R. O. D., Silva, E. D. N. D., Aguiar, A. C. M. D., Novello, B. D. P., Silva, A. A. A. D., & Basso, C. J. (2018). Drift of 2, 4-D and dicamba applied to soybean at vegetative and reproductive growth stage. Ciência Rural, 48(8), e20180179.

Solomon, C. B., & Bradley, K. W. (2014). Influence of application timings and sublethal rates of synthetic auxin herbicides on soybean. Weed Technology, 28(3), 454-464.

Tavares, C. J., Pereira, L. S., Araújo, A. C. F., Martins, D. A., & Jakelaitis, A. (2017). Crescimento inicial de plantas de pequi após aplicação de 2,4-D. Pesquisa Florestal Brasileira, 37(89), 81-87.

Tuffi Santos, L. D., Ferreira, L. R., Ferreira, F. A., Duarte, W. M., Tiburcio, R. A. S., & Machado, A. F. L. (2006). Intoxicação de eucalipto submetido à deriva simulada de diferentes herbicidas. Planta Daninha, 24, 521-526.

Van Bruggen, A. H., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris Jr, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616, 255-268.

Vieira, B. C., Luck, J. D., Amundsen, K. L., Werle, R., Gaines, T. A., & Kruger, G. R. (2020). Herbicide drift exposure leads to reduced herbicide sensitivity in Amaranthus spp. Scientific Reports, 10(1), 1-11.

Yamashita¹, O. M., Betoni, J. R., Guimarães, S. C., & Espinosa, M. M. (2009). Influência do glyphosate e 2, 4-D sobre o desenvolvimento inicial de espécies florestais. Journal of Agricultural and Food Chemistry, 64, 7438-7444.

Zhou, X., Rotondaro, S. L., Ma, M., Rosser, S. W., Olberding, E. L., Wendelburg, B. M., & Clements, B. (2016). Metabolism and residues of 2,4-dichlorophenoxyacetic acid in DAS-40278-9 maize (Zea mays) transformed with aryloxyalkanoate dioxygenase-1 gene. Journal of Agricultural and Food Chemistry, 64(40), 7438-7444.

Published

22/10/2022

How to Cite

SILVA, J. O. da .; SILVA, C. H. de L. e .; SILVA, J. N. .; DAL’EVEDOVE, L. C. .; MARQUES, F. P. .; JAKELAITIS, A. Sensitivity of corn plants to dicamba and triclopyr herbicides. Research, Society and Development, [S. l.], v. 11, n. 14, p. e141111436255, 2022. DOI: 10.33448/rsd-v11i14.36255. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36255. Acesso em: 3 jan. 2025.

Issue

Section

Agrarian and Biological Sciences