Sensibilidade de plantas de milho aos herbicidas dicamba e triclopyr

Autores

DOI:

https://doi.org/10.33448/rsd-v11i14.36255

Palavras-chave:

Fases fenológicas do milho; Rendimento de grãos; Deriva; Herbicidas auxínicos.

Resumo

O deslocamento de herbicidas auxínicos para o local não alvo resulta em prejuízos agronômicos e ambientais. Objetivou-se nesta pesquisa avaliar os efeitos de doses dos herbicidas dicamba e triclopyr aplicados nas fases fenológicas V2, V4 e V8 da cultura do milho. Foram testados em parcelas subdivididas, no arranjo 3x5, as aplicações dos herbicidas em três fases fenológicas do milho (V2, V4 e V8) e cinco doses de cada herbicida (0; 4,8; 24; 48; 96 g e.a. ha-1). As doses de dicamba aplicadas na fase V4 da cultura do milho provocaram injúrias de até 16,5% aos 7 dias após a aplicação (DAA), com posterior recuperação das mesmas aos 28 DAA. Nas fases fenológicas V2 e V8, as doses de dicamba não provocaram injúrias e não afetaram o rendimento de grãos de milho. Para o triclopyr, as plantas de milho foram mais sensíveis quando o herbicida foi aplicado em V4, com incremento linear com o aumento das doses. Aos 21 DAA, os sintomas foram de 50% de fitointoxicação, porém com recuperação parcial aos 28 DAA. O triclopyr aplicado nas fases fenológicas V2 e V4 promoveu redução da produtividade do milho em relação à aplicação feita em V8. A dose de triclopyr de 4,8 g e.a. ha-1 promoveu efeito de hormese no milho, com acréscimo do rendimento de grãos em relação às demais doses aplicadas.

Referências

AGROFIT. Sistema de agrotóxicos fitossanitários. (2021). http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons.

Anagnostopoulos, C., Stasinopoulou, P., Kanatas, P., & Travlos, I. (2020). Differences in metabolism of three Conyza species to herbicides glyphosate and triclopyr revealed by LC-MS/MS. Chilean Journal of Agricultural Research, 80(1), 100-107.

BASF Corporation. 2017. Engenia specimen herbicide product label. Reg. no. 7969-345.

Belz, R. G., Farooq, M. B., & Wagner, J. (2018). Does selective hormesis impact herbicide resistance evolution in weeds? ACCase‐resistant populations of Alopecurus myosuroides Huds. as a case study. Pest Management Science, 74(8), 1880-1891.

Bradley, K. (2017). A final report on dicamba-injured soybean acres. Integrated Pest and Crop Manage. 27: 2.

Busi, R., Goggin, D. E., Heap, I. M., Horak, M. J., Jugulam, M., Masters, R. A., & Wright, T. R. (2018). Weed resistance to synthetic auxin herbicides. Pest Management Science, 74(10), 2265-2276.

Brochado, M. G. S., Mielke, K. C., de Paula, D. F., Laube, A. F. S., Alcántara-de la Cruz, R., Gonzatto, M. P., & Mendes, K. F. (2022). Impacts of dicamba and 2,4-D drift on ‘Ponkan’mandarin seedlings, soil microbiota and Amaranthus retroflexus. Journal of Hazardous Materials Advances, 6, 100084.

Cantu, R. M., Albrecht, L. P., Albrecht, A. J., Silva, A. F., Danilussi, M. T., & Lorenzetti, J. B. (2021). Herbicide alternative for Conyza sumatrensis control in pre-planting in no-till soybeans. Advances in Weed Science, 39: e2021000025

Cedergreen, N., Streibig, J. C., Kudsk, P., Mathiassen, S. K., & Duke, S. O. (2007). The occurrence of hormesis in plants and algae. Dose-response, 5(2), 150-162.

Dintelmann, B. R., Warmund, M. R., Bish, M. D., & Bradley, K. W. (2020). Investigations of the sensitivity of ornamental, fruit, and nut plant species to driftable rates of 2,4-D and dicamba. Weed Technology, 34(3), 331-341.

Egan, J. F., & Mortensen, D. A. (2012). Quantifying vapor drift of dicamba herbicides applied to soybean. Environmental Toxicology and Chemistry, 31(5), 1023-1031.

Fernandes, G., Aparicio, V. C., Bastos, M. C., De Gerónimo, E., Labanowski, J., Prestes, O. D., & Dos Santos, D. R. (2019). Indiscriminate use of glyphosate impregnates river epilithic biofilms in southern Brazil. Science of the Total Environment, 651, 1377-1387.

Ferraz, W. J., Pass, R. L. P. T., Muller, A. L., Gerhardt, K. L., Brustolin, D. B., Hubner, R., & Francisco, C. A. (2020). Aplicação de diferentes herbicidas para o controle de Conyza spp. resistentes ao glyphosate. Revista Cultivando o Saber, 13(2), 1-8.

Foster, M. R., & Griffin, J. L. (2018). Injury criteria associated with soybean exposure to dicamba. Weed Technology, 32(5), 608-617.

Frans, R. E. Measuring plant response. In: Wilkinson, R.E. (Ed.). Research methods in weed science [S.l.]: Southern Weed Science Society, 1972. p.28-41.

Gazola, J. G., Barbieri, G. F., Piasecki, C., Mazon, A. S., & Agostinetto, D. (2021). Chemical control of wild radish and volunteer EnlistTM soybean and selectivity to wheat crop. Revista Brasileira de Ciências Agrárias, 16(3), e413.

Griffin, J. L., Bauerle, M. J., Stephenson, D. O., Miller, D. K., & Boudreaux, J. M. (2013). Soybean response to dicamba applied at vegetative and reproductive growth stages. Weed Technology, 27(4), 696-703.

Hatterman-Valenti, H., Endres, G., Jenks, B., Ostlie, M., Reinhardt, T., Robinson, A., & Zollinger, R. (2017). Defining glyphosate and dicamba drift injury to dry edible pea, dry edible bean, and potato. Hort Technology, 27(4), 502-509.

Heap, I. The International Herbicide-Resistant Weed Database. (2022). www.weedscience.org.

Joseph, D. D., Marshall, M. W., & Sanders, C. H. (2018). Efficacy of 2, 4-D, dicamba, glufosinate and glyphosate combinations on selected broadleaf weed heights. American Journal of Plant Sciences, 9(6), 1321-1333.

Kruger, G. R., Davis, V. M., Weller, S. C., & Johnson, W. G. (2010). Control of horseweed (Conyza canadensis) with growth regulator herbicides. Weed Technology, 24(4), 425-429.

Mortensen, D. A., Egan, J. F., Maxwell, B. D., Ryan, M. R., & Smith, R. G. (2012). Navigating a critical juncture for sustainable weed management. BioScience, 62(1), 75-84.

Patton, A. J., Weisenberger, D. V., & Liu, W. (2020). Efficacy of triclopyr and synthetic auxin herbicide mixtures for common blue violet (Viola sororia) control. Weed Technology, 34(4), 475-481.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. (1ª. ed.) –Santa Maria, RS: UFSM, NTE.

Silva, D. R. O. D., Silva, E. D. N. D., Aguiar, A. C. M. D., Novello, B. D. P., Silva, A. A. A. D., & Basso, C. J. (2018). Drift of 2, 4-D and dicamba applied to soybean at vegetative and reproductive growth stage. Ciência Rural, 48(8), e20180179.

Solomon, C. B., & Bradley, K. W. (2014). Influence of application timings and sublethal rates of synthetic auxin herbicides on soybean. Weed Technology, 28(3), 454-464.

Tavares, C. J., Pereira, L. S., Araújo, A. C. F., Martins, D. A., & Jakelaitis, A. (2017). Crescimento inicial de plantas de pequi após aplicação de 2,4-D. Pesquisa Florestal Brasileira, 37(89), 81-87.

Tuffi Santos, L. D., Ferreira, L. R., Ferreira, F. A., Duarte, W. M., Tiburcio, R. A. S., & Machado, A. F. L. (2006). Intoxicação de eucalipto submetido à deriva simulada de diferentes herbicidas. Planta Daninha, 24, 521-526.

Van Bruggen, A. H., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris Jr, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616, 255-268.

Vieira, B. C., Luck, J. D., Amundsen, K. L., Werle, R., Gaines, T. A., & Kruger, G. R. (2020). Herbicide drift exposure leads to reduced herbicide sensitivity in Amaranthus spp. Scientific Reports, 10(1), 1-11.

Yamashita¹, O. M., Betoni, J. R., Guimarães, S. C., & Espinosa, M. M. (2009). Influência do glyphosate e 2, 4-D sobre o desenvolvimento inicial de espécies florestais. Journal of Agricultural and Food Chemistry, 64, 7438-7444.

Zhou, X., Rotondaro, S. L., Ma, M., Rosser, S. W., Olberding, E. L., Wendelburg, B. M., & Clements, B. (2016). Metabolism and residues of 2,4-dichlorophenoxyacetic acid in DAS-40278-9 maize (Zea mays) transformed with aryloxyalkanoate dioxygenase-1 gene. Journal of Agricultural and Food Chemistry, 64(40), 7438-7444.

Downloads

Publicado

22/10/2022

Como Citar

SILVA, J. O. da .; SILVA, C. H. de L. e .; SILVA, J. N. .; DAL’EVEDOVE, L. C. .; MARQUES, F. P. .; JAKELAITIS, A. Sensibilidade de plantas de milho aos herbicidas dicamba e triclopyr. Research, Society and Development, [S. l.], v. 11, n. 14, p. e141111436255, 2022. DOI: 10.33448/rsd-v11i14.36255. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36255. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas