Screening of ligninolytic enzymes produced by Ganoderma lucidum in solid residues from the Amazon

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36257

Keywords:

Enzimas oxidativas; Fermentação sólida; Resíduos agroindustriais.

Abstract

White rot fungi have one of the most efficient oxidative lignin degradation systems, and present an enzymatic complex that is responsible for digesting lignocellulosic matter. The aim of this study was to evaluate the production of laccase and total peroxidases by Ganoderma lucidum via solid-state fermentation using açaí seeds and marupá (Simarouba amara) sawdust unsupplemented and supplemented with wheat, corn and rice bran. G. lucidum was inoculated in substrates prepared with the residues and incubated at 25 ºC. Enzymatic extractions were performed on the culture substrates every 2 days for 30 days. The enzymatic activities were determined using ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt), with the addition of the enzymatic cofactor H2O2 for total peroxidases. The laccase activity was higher in the supplemented residues, with emphasis on the açaí-based substrate on the 16th day of cultivation, while in marupá the maximum activity was on the 6th day. In the unsupplemented açaí residue, the maximum peak of activity was on the 8th day and, in marupá, no fungal growth was observed. As for total peroxidases, G. lucidum cultivated in the supplemented açaí substrates showed activity peaks on the 8th, 12th, 16th and 28th day, and on 6th and 12th day under unsupplemented conditions. While, in the marupá, total peroxidase activity was observed only on the 6th day of cultivation. Thus, G. lucidum showed potential for producing laccases and total peroxidases, with the substrate supplementation inducing the synthesis of these enzymes.

References

Aguiar, L. V. B., Gouvêa, P. R. S., Sales–Campos, C., & Chevreuil, L. R. (2022). Production of commercial and Amazonian strains of Pleurotus ostreatus in plant waste. Brazilian Journal of Development, 8(6): 47299–47321. https://doi.org/10.34117/bjdv8n6-299

Aguiar, L. V. B. D., Sales-Campos, C., Gouvêa, P. R. D. S., Vianez, B. F., Dias, E. S., & Chevreuil, L. R. (2021). Substrate disinfection methods on the production and nutritional composition of a wild oyster mushroom from the Amazon. Ciência e Agrotecnologia, 45:e010321. https://doi.org/10.1590/1413-7054202145010321

Amiri–Sadeghan, A., Aftabi, Y., Arvanaghi, H. R., Shokri, E., Khalili, M., Seyedrezazadeh, E., & Kuhar, F. (2022). A Review of Substrates for Solid–State Fermentation of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), for Basidiome Production and Effect on Bioactive Compounds. International Journal of Medicinal Mushrooms, 24(4):15 – 29. https://doi.org/10.1615/IntJMedMushrooms.2022043192

Agunbiade, O. J., Famutimi, O. G., Kadiri, F. A., Kolapo, O. A., & Adewale, I. O. (2021). Studies on peroxidase from Moringa oleifera Lam leaves. Heliyon, 7(1), e06032. https://doi.org/10.1016/j.heliyon.2021.e06032

Arora, D. S., & Sharma, R. K. (2010). Ligninolytic fungal laccases and their biotechnological applications. Applied Biochemistry and Biotechnology, 160: 1760–1788. https://doi.org/10.1007/s12010-009-8676-y

Bellettini, M. B., Fiorda, F. A, Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S., Júnior, A. M., & Ribani, R. H. (2019). Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26(4): 633–646. https://doi.org/10.1016/j.sjbs.2016.12.005

Bhat, Z. A., Wani, A. H., War, J. M., & Bhat, M. Y. (2021). Major bioactive properties of Ganoderma polysaccharides: A review. Asian Journal of Pharmaceutical and Clinical Research, 14(3): 11–24. https://doi.org/10.22159/ajpcr.2021.v14i3.40390

Carrasco, J., Zied, D. C., Pardo, J. E., Preston, G. M., & Pardo–Giménez, A. (2018). Supplementation in mushroom crops and its impact on yield and quality. AMB Express, 8(1), 1–9. https://doi.org/10.1186/s13568-018-0678-0

Chang, S. T., & Miles, P. G. (1989). Edible mushrooms and their cultivation. CRC Press. Boca Raton, FL; EEUU. 345 pp.

Ćilerdžić, J., Stajić, M., & Vukojević, J. (2016). Degradation of wheat straw and oak sawdust by Ganoderma applanatum. International Biodeterioration & Biodegradation, 114: 39–44. https://doi.org/10.1016/j.ibiod.2016.05.024

Devi, R.; Kapoor, S.; Thakur, R.; Sharma, E.; Tiwari, R. K., & Joshi, S. J. (2022). Lignocellulolytic enzymes and bioethanol production from spent biomass of edible mushrooms using Saccharomyces cerevisiae and Pachysolen tannophilus. Biomass Conversion and Biorefinery, 1–15. https://doi.org/10.1007/s13399-022-02406-3

Economou, C. N., Diamantopoulou, P. A., & Philippoussis, A. N. (2017). Valorization of spent oyster mushroom substrate and laccase recovery through successive solid state cultivation of Pleurotus, Ganoderma, and Lentinula strains. Applied Microbiology and Biotechnology, 101: 5213–5222. https://doi.org/10.1007/s00253-017-8251-3

Floudas, D., Bentzer, J., Ahrén, D., Johansson, T., Persson, P., & Tunlid, A. (2020). Uncovering the hidden diversity of litter–decomposition mechanisms in mushroom–forming fungi. The ISME journal, 14(8): 2046–2059. https://doi.org/10.1038/s41396-020-0667-6

GBIF: The Global Biodiversity Information Facility (2021). Ganoderma P. Karst., 1881. Available from https://www.gbif.org/species/2519220/metrics. (29 September 2022)

Gauna, A., Larran, A. S., Feldman, S. R., Permingeat, H. R., & Perotti, V. E. (2021). Secretome characterization of the lignocellulose-degrading fungi Pycnoporus sanguineus and Ganoderma resinaceum growing on Panicum prionitis biomass. Mycologia, 113(5): 877–890. https://doi.org/10.1080/00275514.2021.1922249

Gurung, O. K., Budathoki, U., & Parajuli, G. (2012). Effect of different substrates on the production of Ganoderma lucidum (Curt.: Fr.) Karst. Our nature, 10(1): 191–198. https://doi.org/10.3126/on.v10i1.7781

Heinzkill, M., Bech, L., Halkier, T., Schneider, P., & Anke, T. (1998). Characterization of laccases and peroxidases from wood–rotting fungi (Family Coprinaceae). Applied and Environmental Microbiology, 64: 1601–1606. https://doi.org/10.1128/AEM.64.5.1601-1606.1998

Hu, S., Zhu, Q., Ren. A., Ge, L., He, J., Zhao, M., & He, Q. (2022). Roles of water in improved production of mycelial biomass and lignocellulose–degrading enzymes by water–supply solid–state fermentation of Ganoderma lucidum. Journal of Bioscience and Bioengineering, 21: 00288–00297. https://doi.org/10.1016/j.jbiosc.2021.10.006

Jaouadi, B., Bouacem, K., Rekik, H., Jaouadi, N. Z., Bejar, S., Annane, R., Badis, A., & Bouanane-Darenfed, A. (2019). Biotechnological properties of new microbial peroxidases for lignin and humic acid biodegradation and biodeterioration. In Euro-Mediterranean Conference for Environmental Integration (pp. 771-776). Springer, Cham. https://doi.org/10.1007/978-3-030-51210-1_121

Kumla, J., Suwannarach, N., Sujarit, K., Penkhrue, W., Kakumyan, P., Jatuwong, K., & Lumyong, S. (2020). Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro–industrial waste. Molecules, 25: 2811. https://doi.org/10.3390/molecules25122811

Leite, P., Sousa, D., Fernandes, H., Ferreira, M., Costa, A. R., Filipe, D., & Salgado, J. M. (2021). Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Current Opinion in Green and Sustainable Chemistry, 27: 100407. https://doi.org/10.1016/j.cogsc.2020.100407

Lima, A. C. P., Bastos, D. L. R., Camarena, M. A., Bon, E. P. S., Cammarota, M. C., Teixeira, R. S. S., & Gutarra, M. L. E. (2021). Physicochemical characterization of residual biomass (seed and fiber) from açaí (Euterpe oleracea) processing and assessment of the potential for energy production and bioproducts. Biomass Conversion and Biorefinery, 11(3): 925–935. https://doi.org/10.1007/s13399-019-00551-w

Loureiro, A. A., M. F., Silva, J. C., & Alencar, R. M. D. (1979). Essências madeireiras da Amazônia: 1–187. INPA, Manaus.

Madhavi, V., & Lele, S. S. (2009). Laccase: Properties and applications. BioResources, 4(4): 1694–1717. https://doi.org/10.1016/B978-0-12-805419-2.00007-1

Maranho, Á. S., & Paiva, A. V. (2012). Produção de mudas de Physocalymma scaberrimum em substratos compostos por diferentes porcentagens de resíduo orgânico de açaí. Floresta, 42(2): 399–408. http://dx.doi.org/10.5380/rf.v42i2.19220

Makarenkova, G., Balode, V., Zala, D., Azena, E., Rapoport, A., & Muiznieks, I. (2021). Effect of pretreated colza straw on the growth and extracellular ligninolytic enzymes production by Lentinula edodes and Ganoderma lucidum. Fermentation, 7(3), 157. https://doi.org/10.3390/fermentation7030157

Melanouri, E. M., Dedousi, M., & Diamantopoulou, P. (2022). Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro–industrial residues in solid–state fermentation. Part I: Screening for growth, endoglucanase, laccase and biomass production in the colonization phase. Carbon Resources Conversion, 5(1): 61–70. https://doi.org/10.1016/j.crcon.2021.12.004

Narnoliya, L. K., Agarwal, N., Patel, S. N., & Singh, S. P. (2019). Kinetic characterization of laccase from Bacillus atrophaeus, and its potential in juice clarification in free and immobilized forms. Journal of Microbiology, 57(10): 900–909. https://doi.org/10.1007/s12275-019-9170-z

Pedri, Z. C., Lozano, L. M. S., Hermann, K. L., Helm, C. V., Peralta, R. M., & Tavares, L. B. B. (2015). Influence of nitrogen sources on the enzymatic activity and grown by Lentinula edodes in biomass Eucalyptus benthamii. Brazilian Journal of Biology, 75 940–947. https://doi.org/10.1590/1519-6984.03214

Rossi, I. H., Monteiro, A. C., & Machado, J. O. (2001). Desenvolvimento micelial de Lentinula edodes como efeito da profundidade e suplementação do substrato. Pesquisa Agropecuária Brasileira, 36: 887–891. https://doi.org/10.1590/S0100-204X2001000600006

Sales–Campos, C.; Araujo, L. M., Minhoni, M. T. D. A., & Andrade, M. C. N. D. (2010a). Análise físico–química e composição nutricional da matéria prima e de substratos pré e pós cultivo de Pleurotus ostreatus. Interciencia, 35: 70–76.

Sales–Campos, C., Araújo, L. M., Minhoni, M. T. A., & Andrade, M. C. N. (2011). Physiochemical analysis and centesimal composition of Pleurotus ostreatus mushroom grown in residues from the Amazon. Ciência e Tecnologia de Alimentos, 2(31): 456–461. https://doi.org/10.1590/S0101-20612011000200027

Sales-Campos, C.; Minhoni, M. T. A., Andrade, M. C. N. (2010b). Produtividade de Pleurotus ostreatus em resíduos da Amazônia. Interciencia, 35(3): 198-201.

Santos, J. S. P. A., Mendonça, A. V. R., da Silva Carvalho, E., de Souza, M. D. H., & de Souza, M. O. (2021). Storage of Simarouba amara Aubl. seeds. Boletim do Museu Paraense Emílio Goeldi–Ciências Naturais, 16(1): 89–95. http://doi.org/10.46357/bcnaturais.v16i1.253.

Santos, Y. V. S., & Cavallazzi, J. R. P. (2017) A new sustainable approach for laccase production and bioremediation. IIOABJ: 8 (1): 11–14.

Schallemberger, J. B., Libardi N., Dalari, B. L. S. K., Chaves, M. B., & Hassemer, N. M. E. (2021). Textile azo dyes discolouration using spent mushroom substrate: enzymatic degradation and adsorption mechanisms. Environmental Technology. 2:1–22. https://doi.org/10.1080/09593330.2021.2000038

Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro–industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5(1): 1–15. https://doi.org/10.1186/s40643-017-0187-z

Sharma, C., Bhardwaj, N., Sharma, A., Tuli, H. S., Batra, P, Beniwal, V., Gupta, G. K., & Sharma, A. K. (2019). Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. Journal of Herbal Medicine, 17: 1–9. https://doi.org/10.1016/j.hermed.2019.100268

Simonić, J., Vukojević, J., Stajić, M., & Glamočlija, J. (2010). Intraspecific diversity within Ganoderma lucidum in the production of laccase and Mn–oxidizing peroxidases during plant residues fermentation. Applied Biochemistry and Biotechnology, 162(2): 408-415. https://doi.org/10.1007/s12010-009-8833-3

Sosa–Martínez, J. D., Balagurusamy, N., Montañez, J., Peralta, R. A., Moreira, R. D. F. P. M.; Bracht, A., & Morales–Oyervides, L. (2020). Biodegradação de corantes sintéticos por enzimas ligninolíticas fúngicas: Otimização de processos, avaliação de metabólitos e avaliação de toxicidade. Journal of Hazardous Materials, 400:123254.

Sousa, M. A. D. C., Costa, L. M. A. S., Pereira, T. S., Zied, D. C, Rinker, D. L., & Dias, E. S. (2019). Enzyme activity and biochemical changes during production of Lentinula edodes (Berk.) Pegler. Food Science and Technology, 39(3): 774–780. https://doi.org/10.1590/fst.38517

Teigiserova, D. A., Bourgine, J., & Thomsen, M. (2021). Closing the loop of cereal waste and residues with sustainable technologies: An overview of enzyme production via fungal solid–state fermentation. Sustainable Production and Consumption, 27, 845–857. https://doi.org/10.1016/j.spc.2021.02.010

Wang, F., Xu, L., Zhao, L., Ding, Z., Ma, H., & Terry, N. (2019). Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: A review. Microorganisms, 7: 665–690. https://doi.org/10.3390/microorganisms7120665

Wolfenden, B. S., & Willson, R. L. (1982). Radical–cations as reference chromogens in the kinetic studies of one–electron transfer reactions: pulse radiolysis studies of 2,2’–azinobis–(3–ethylbenzthiazoline–6–sulphonate). Journal of the Chemical Society of Pakistan, 02: 805–812. https://doi.org/10.1039/P29820000805

Yadav, M., & Yadav, H.S. (2015). Aplicações de enzimas ligninolíticas a poluentes, águas residuais, corantes, solo, carvão, papel e polímeros. Cartas de Química Ambiental, 13(3): 309–318.

Zhang, S., Dong, Z., Shi, J., Yang, C., Fang, Y., Chen, G., Chen, H., & Tian, C. (2022). Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase. Bioresource Technology, (361): 127699. https://doi.org/10.1016/j.biortech.2022.127699

Zhou, S., Zhang, J., Ma, F., Tang, C., Tang, Q., & Zhang, X. (2018). Investigation of lignocellulolytic enzymes during different growth phases of Ganoderma lucidum strain G0119 using genomic, transcriptomic and secretomic analyses. PloS One, 13(5): e0198404. https://doi.org/10.1371/journal.pone.0198404

Downloads

Published

25/10/2022

How to Cite

CHEVREUIL, L. R.; OLIVEIRA JÚNIOR, S. D. de; VASCONCELOS, A. dos S.; BINDÁ, V. da S.; PESSOA, V. A.; NASCIMENTO, L. B. de B. do; GOUVÊA, P. R. dos S.; SALES-CAMPOS, C. Screening of ligninolytic enzymes produced by Ganoderma lucidum in solid residues from the Amazon. Research, Society and Development, [S. l.], v. 11, n. 14, p. e243111436257, 2022. DOI: 10.33448/rsd-v11i14.36257. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36257. Acesso em: 9 dec. 2022.

Issue

Section

Agrarian and Biological Sciences