Effects of Beauveria bassiana (Hypocreales: Cordycipitaceae) on the midgut of the Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) maggots
DOI:
https://doi.org/10.33448/rsd-v11i14.36389Keywords:
Biotechnology; Biological control; Entomopathogen; Fungi; Insect pest; Myiasis.Abstract
Beauveria bassiana is an entomopathogenic fungus widely used in pest management. After contact with target organisms, fungal conidia germinate and colonize tissues and organs, causing death by starvation and/or septicemia. Chrysomya megacephala is an insect pest with worldwide distribution. Its larvae cause secondary myiasis in animals of interest, and adults are pathogen vectors. This study aimed to analyze the effects of the Ballvéria® biopesticide on the midgut of C. megacephala third-instar maggots. Four concentrations (1, 1.5, 2, and 4%) of the biopesticide were applied to an artificial diet, followed by conditioning of the maggots. Mortality data and samples for histological and ultrastructural analysis were collected every 24 h, for 144 h. Mortality data were analyzed using SPSS 25.0, and lethal concentrations (LC50 and LC90) were calculated using Probit regression. Concentrations of 2 and 4% resulted in mortality rates of 26 and 36%, respectively. LC50 and LC90 were estimated at 5.3 and 10.9%, respectively. Observational, histological, and ultrastructural analyses revealed the presence of tegumentary melanizations, conidia in the midgut, spacing in the basal labyrinth, degeneration of microvilli, absence of the peritrophic membrane, fungal extrusion on the external surface of the midgut, and dispersion of hyphae, conidiophores, and conidia close to muscle fibers. Internally, hyphae are located on microvilli and cell projections. Our data confirm that the Ballvéria® biopesticide causes cytotoxic effects in the midgut of C. megacephala maggots and can be used as a sustainable alternative in its biological control for Integrate Pest Management.
References
Almehmadi, R. M. (2011). Larvicidal, histopathological and ultra-structure studies of Matricharia chamomella extracts against the rift valley fever mosquito Culex quinquefasciatus (Culicidae: Diptera). Journal of Entomology, 8(1): 63-72. https://dx.doi.org/10.3923/je.2011.63.72
Bergamo, R. H. S., Daquila, B. V. & Conte, H. (2019). Sustentabilidade agrícola com fungos entomopatogênicos. In: Neto, B. R. S. (ed.). Principais grupos e aplicações biotecnológicas dos fungos. Atena editora: Ponta Grossa, pp. 41-52. https://dx.doi.org/10.22533/at.ed.3071918105
Bogus, M. I., Wronska, A. K., Kaczmarek, A. & Bogus-Sobocinska, M. (2021). In vitro screening of 65 mycotoxins for insecticidal potential. Plos One, 16(3): e0248772. https://doi.org/10.1371/journal.pone.0248772
Boonsriwong, W., Sukontason, K., Vogtsberger, R. C. & Sukontason, K. L. (2011). Alimentary canal of the blow fly Chrysomya megacephala (F.) (Diptera: Calliphoridae): An emphasis on dissection and morphometry. Journal of Vector Ecology, 36(1): 1-10. https://doi.org/10.1111/j.1948-7134.2011.00135.x
Caleffe, R. R. T., Oliveira, S. R., Schoffen, R. P., Oliveira-Junior, V. A. & Conte, H. (2019). Biological Control of Diptera Calliphoridae: A Review. Journal of Entomological Research Society, 21(2): 145-155.
Daquila, B. V., Scudeler, E. L., Dossi, F. C. A., Moreira, D. R., Pamphile, J. A. & Conte, H. (2019). Action of Bacillus thuringiensis (Bacillales: Bacillaceae) in the midgut of the sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae). Ecotoxicology and Environmental Safety, 184: 109642. https://doi.org/10.1016/j.ecoenv.2019.109642
Diaz-Albiter, H., Sant’Anna, M. R. V., Genta, F. A. & Dillon, R. J. (2012). Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the phlebotomine sand fly Lutzomyia longipalpis. Journal of Biological Chemistry, 287(28): 23995-24003. https://doi.org/10.1074/jbc.M112.376095
Dubovisky, I. M., Krukova, N. A. & Glupov, V. V. (2008). Phagocytic activity and encapsulation rate of Galleria mellonella larval hemocytes during bacterial infection by Bacillus thuringiensis. Journal of Invertebrate Pathology, 98(3): 360-362. https://doi.org/10.1016/j.jip.2008.03.011
Eley, K. L., Halo, L. M., Song, Z., Powles, H., Cox, R. J, Bailey, A. M., Lazarus, C. M. & Simpson, T. J. (2007). Biosynthesis of the 2-Pyridone Tenellin in the Insect Pathogenic Fungus Beauveria bassiana. ChemBioChem, 8(3): 289-297. https://doi.org/10.1002/cbic.200600398
Fauvarque, M-O. & Williams, M. J. (2011). Drosophila cellular immunity: a story of migration and adhesion. Journal of Cell Science 124(9): 1373-1382. https://doi.org/10.1242/jcs.064592
Felton, G. W. & Summers, C. B. (1995). Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29(2): 187-197. https://doi.org/10.1002/arch.940290208
Greenberg, B. (1973). Flies and Disease. Biological and Disease Transmission. (Second edition). Princeton University Press, New Jersey, pp. 92-99.
Hillerton, J. E. & Vincent, J. F. V. (1983). Consideration of the importance of hydrophobic interactions in stabilizing the insect cuticle. International Journal of Biological Macromolecules, 5(3): 163-166. https://doi.org/10.1016/0141-8130(83)90032-6
Holder, D. J. & Keyhani, N. O. (2005). Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Applied and Environmental Microbiology, 71(9): 5260-5266. https://doi.org/10.1128/AEM.71.9.5260-5266.2005
Huang, H., Long, S., Li, M., Gao, F., Du, J., Fan, J. & Peng, X. (2018). Bromo-pentamethine as mitochondria-targeted photosensitizers for cancer cell apoptosis with high efficiency. Dyes and Pigments, 149: 633-638. https://doi.org/10.1016/j.dyepig.2017.11.010
IBM Corporation. (2017). IBM SPSS Statistics for Windows IBM, Armonk, New York, 25.0.
Jiravanichpaisal, P., Lee, B. L. & Söderhäll, K. (2006). Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211(4): 213-236. https://doi.org/10.1016/j.imbio.2005.10.015
Junqueira, L. C. U. & Junqueira, L. M. M. S. (1983). Técnicas Básicas de Citologia e Histologia. Editora Santos, São Paulo, pp. 1-23.
Kanost, M. R. & Clem, R. J. (2012). Insect proteases. In: Lawrence, I. G. (ed). Insect Molecular Biology and Biochemistry. Elsevier: London, pp. 1-16 .
Kumar, S., Christophides, G. K., Cantera, R., Charles, B., Han. Y. S., Meister, S., Dimopoulos, G., Kafatos, F. C. & Barrilas-Mury, C. (2003). The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. PNAS, 100(24): 14139-14144. https://doi.org/10.1073/pnas.2036262100
La-Rosa, W., Lopez, F. L. & Liedo, P. (2002). Beauveria bassiana as a pathogen of the Mexican fruit fly (Diptera: Tephritidae) under laboratory conditions. Journal of Economic Entomology, 95(1): 36-43. https://doi.org/10.1603/0022-0493-95.1.36
Lemaitre, B. & Hoffmann, J. (2007). The host defense of Drosophila melanogaster. Annual Review of Immunology. 25: 697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
Lewis, M. W., Robalino, I. V. & Keyhani, N. O. (2009). Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana. Microbiology, 155(9): 3110-3120. https://doi.org/10.1099/mic.0.029165-0
Ling, S., Zhang, R., 2011. Effect of friponil on brain and muscle ultrastructure of Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Ecotoxicology and Environmental Safety, 74(5): 1348-1354. https://doi.org/10.1016/j.ecoenv.2011.03.011
Luckhart, S., Giulivi, C., Drexler, A. L., Antonova-Koch, Y., Sakaguchi, D., Napoli, E., Wong, S., Price, M. S., Eigenheer, R., Phinney, B. S., Pakpour, N., Pietri, J. E., Cheung, K., Georgis, M. & Riehle, M. (2013). Sustained activation of akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. Plos Phatogens, 9(2): e1003180. https://doi.org/10.1371/journal.ppat.1003180
Mochi, D. A., Monteiro, A. C., Machado, A. C. R. & Yoshida, L. (2010). Efficiency of entomopathogenic fungi in the control of eggs and larvae of the horn fly Haematobia irritans (Diptera: Muscidae). Veterinary Parasitology, 167(1): 62-66. https://doi.org/10.1016/j.vetpar.2009.09.046
Nakhleh, J., El-Moussawi, L. & Osta, M. A. (2016). The melanization response in insect immunity. Advances in Insect Physiology, 52: 83-109. https://doi.org/10.1016/bs.aiip.2016.11.002
Nascimento, L. & Melnyk, A. (2016). A química dos pesticidas no meio ambiente e na saúde. Revista Mangaio Acadêmico, 1(1): 54-61.
Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P. & Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health, 4: 148. https://doi.org/10.3389/fpubh.2016.00148
Oliveira, S. R., Caleffe, R. R. T., Gigliolli, A. A. S., Moreira, D. R., Conte, H. & Ruvolo-Takasusuki, M. C. C. (2021). Developmental changes in larvae of the oriental latrine fly, Chrysomya megacephala, exposed to deltamethrin. Parasitology Research, 120: 1-7. https://doi.org/10.1007/s00436-020-06933-8
Qi, Z. J., Shi, B. J., Hu, Z. N., Zhang, Y. & Wu, W. J. (2011). Ultrastructural effects of Celangulin V on midgut cells of the oriental armyworm, Mythimna separata walker (Lepidoptera: Noctuidae). Ecotoxicology and Environmental Safety, 74(3): 439-444. https://doi.org/10.1016/j.ecoenv.2010.10.004
Quintero-Zapata, I., Flores-González, M. S., Luna-Santillana, E. J., Arroyo-González, N. & Gandarilla-Pacheco, F. L. (2022). Late effects of Beauveria bassiana on larval stages of Aedes aegypti Linneo, 1762 (Diptera: Culicidae). Brazilian Journal of Biology, 82: e237789. https://doi.org/10.1590/1519-6984.237789
Radogna, F., Cerella, C., Gaigneaux, A., Christov, C., Dicato, M. & Diederich, M. (2016). Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene, 35: 3839-3853. https://doi.org/10.1038/onc.2015.455
Scudeler, E. L., Garcia, A. S. G., Padovani, C. R., Pinheiro, P. F. F. & Santos, D. C. (2016). Cytotoxic effects of neem oil of the predator Ceraeochrysa claveri. Micron, 80: 96-111. http://dx.doi.org/10.1603/ICE.2016.113375
Scudeler, E. L. & Santos, D. C. (2013). Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navas, 1911) (Neuroptera: Chrysopidae). Micron 44: 125-132. https://doi.org/10.1016/j.micron.2012.05.009
Sontigun, N., Sukontason, K. L., Klong-Klaew, T., Sanit, S., Samerjai, C., Somboon, P., Thanapornpoonpong, S-N., Amendt, J. & Sukontason, K. (2018). Bionomics of the oriental latrine fly Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae): temporal fluctuation and reproductive potential. Parasites & Vectors, 11: 415. https://doi.org/10.1186/s13071-018-2986-2
Sparks, T. C. & Nauen, R. (2015). IRAC: mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121: 122-128. https://doi.org/10.1016/j.pestbp.2014.11.014
Strand, M. R. (2008). The insect cellular immune response. Insect Science, 15(1): 1-14. https://doi.org/10.1111/j.1744-7917.2008.00183.x
Sukontason, K., Chaiwong, T., Tayutivutikul, J., Somboon, P., Choochote, W., Piangjai, S. & Source, K. L. S. (2005). Susceptibility of Musca domestica and Chrysomya megacephala to Permethrin and Deltamethrin in Thailand. Journal of Medical Entomology, 42: 812-814. https://doi.org/10.1093/jmedent/42.5.812
Von-Zuben C. J., Stangenhaus, G. & Godoy, W. A. C. (2000). Competição larval em Chrysomya megacephala (F.) (Diptera: Calliphoridae): efeitos de diferentes níveis de agregação larval sobre estimativas de peso, fecundidade e investimento reprodutivo. Revista Brasileira de Biologia, 60(2): 195-203. https://doi.org/10.1590/S0034-71082000000200002
Wanchoo, A., Lewis, M. W. & Keyhani, N. O. (2009). Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiology 155(9): 3121-3133. https://doi.org/10.1099/mic.0.029157-0
Wang, H., Peng, H., Li, W., Cheng, P. & Gong, M. (2021). The Toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Frontiers in Microbiology, 12: 705343. https://doi.org/10.3389/fmicb.2021.705343
Wei, G., Lai, Y., Wang, G., Chen, H., Li, F. & Wang, S. (2017). Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. PNAS, 114(23): 5994-5999. https://doi.org/10.1073/pnas.1703546114
Wen, L. V., Zhang, Z., Zhang, K. Y., Yang, H., Liu, S., Xu, A., Guo, S., Zhao, Q. & Huang, W. (2016). A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angewandte Chemie, 55(34): 9947-9951. https://doi.org/10.1002/anie.201604130
White, R. L., Geden, C. J. & Kaufman, P. E. (2021a) Exposure timing and method affect Beauveria bassiana (Hypocreales: Cordycipitaceae) efficacy against house fly (Diptera: Muscidae) larvae. Journal of Medical Entomology, 58(1): 372-378. https://doi.org/10.1093/jme/tjaa156
White, R. L., Geden, C. J., Kaufman, P. E. & Johnson, D. (2021b). Comparative virulence of Metarhizium anisopliae and four strains of Beauveria bassiana against house fly (Diptera: Muscidae) adults with attempted selection for faster mortality. Journal of Medical Entomology 58(4): 1771-1778. https://doi.org/10.1093/jme/tjab027
Xie, X. Q., Wang, J., Huang, B. F., Ying, S. H. & Feng, M. G. (2010). A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when overexpressed in the fungal pathogen. Applied Microbiology and Biotecnology, 86: 1543-1553. https://doi.org/10.1007/s00253-010-2437-2
Zimmermann, G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17(6): 553-596. https://doi.org/10.1080/09583150701309006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vagner José Deves; Bruno Vinicius Daquila; Elton Luiz Scudeler; Ronaldo Roberto Tait Caleffe; Helio Conte
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.