Efectos de Beauveria bassiana (Hypocreales: Cordycipitaceae) en el intestino medio de las larvas da Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i14.36389

Palabras clave:

Biotecnología; Entomopatógeno; Hongos; Insectos plaga; Miasis.

Resumen

Beauveria bassiana es un hongo entomopatógeno ampliamente utilizado en el manejo de plagas. Después del contacto con los organismos plagas, los conidios fúngicos germinan y colonizan tejidos y órganos, provocando su muerte por inanición y/o septicemia. Chrysomya megacephala es un insecto plaga de distribución mundial, sus larvas causan miasis secundaria en animales de interés y los adultos son vectores de patógenos. Este estudio tuvo como objetivo analizar los efectos del biopesticida Ballvéria® en el intestino medio de larvas de C. megacephala en tercer estadio. Se aplicaron cuatro concentraciones (1; 1,5; 2 y 4%) del biopesticida sobre una dieta artificial, seguido del acondicionamiento de las larvas. Los datos de mortalidad y las muestras para análisis histológico y ultraestructural se recogieron cada 24 h, durante 144 h. Los datos de mortalidad se analizaron con el software SPSS 25.0 y las concentraciones letales (LC50 y LC90) se calcularon mediante regresión Probit. Las concentraciones del 2 y 4% resultaron en la mortalidad del 26 y 36% de las larvas. La CL50 y CL90 se estimaron en 5,3 y 10,9%, respectivamente. Los análisis observacionales, histológicos y ultraestructurales revelaron la presencia de melanizaciones tegumentarias, conidios en el intestino medio, espaciamiento en el laberinto basal, degeneración de microvellosidades, ausencia de la membrana peritrófica, extrusión fúngica en la superficie externa del intestino medio y dispersión de hifas, conidióforos y conidios, cerca de las fibras musculares. Internamente, las hifas se encuentran en las microvellosidades y proyecciones celulares. Nuestros datos confirman que el bioinseticida Ballvéria® provoca efectos citotóxicos en el intestino medio de las larvas de C. megacephala y puede utilizarse como una alternativa sostenible en su control biológico a través del Manejo Integrado de Plagas.

Citas

Almehmadi, R. M. (2011). Larvicidal, histopathological and ultra-structure studies of Matricharia chamomella extracts against the rift valley fever mosquito Culex quinquefasciatus (Culicidae: Diptera). Journal of Entomology, 8(1): 63-72. https://dx.doi.org/10.3923/je.2011.63.72

Bergamo, R. H. S., Daquila, B. V. & Conte, H. (2019). Sustentabilidade agrícola com fungos entomopatogênicos. In: Neto, B. R. S. (ed.). Principais grupos e aplicações biotecnológicas dos fungos. Atena editora: Ponta Grossa, pp. 41-52. https://dx.doi.org/10.22533/at.ed.3071918105

Bogus, M. I., Wronska, A. K., Kaczmarek, A. & Bogus-Sobocinska, M. (2021). In vitro screening of 65 mycotoxins for insecticidal potential. Plos One, 16(3): e0248772. https://doi.org/10.1371/journal.pone.0248772

Boonsriwong, W., Sukontason, K., Vogtsberger, R. C. & Sukontason, K. L. (2011). Alimentary canal of the blow fly Chrysomya megacephala (F.) (Diptera: Calliphoridae): An emphasis on dissection and morphometry. Journal of Vector Ecology, 36(1): 1-10. https://doi.org/10.1111/j.1948-7134.2011.00135.x

Caleffe, R. R. T., Oliveira, S. R., Schoffen, R. P., Oliveira-Junior, V. A. & Conte, H. (2019). Biological Control of Diptera Calliphoridae: A Review. Journal of Entomological Research Society, 21(2): 145-155.

Daquila, B. V., Scudeler, E. L., Dossi, F. C. A., Moreira, D. R., Pamphile, J. A. & Conte, H. (2019). Action of Bacillus thuringiensis (Bacillales: Bacillaceae) in the midgut of the sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae). Ecotoxicology and Environmental Safety, 184: 109642. https://doi.org/10.1016/j.ecoenv.2019.109642

Diaz-Albiter, H., Sant’Anna, M. R. V., Genta, F. A. & Dillon, R. J. (2012). Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the phlebotomine sand fly Lutzomyia longipalpis. Journal of Biological Chemistry, 287(28): 23995-24003. https://doi.org/10.1074/jbc.M112.376095

Dubovisky, I. M., Krukova, N. A. & Glupov, V. V. (2008). Phagocytic activity and encapsulation rate of Galleria mellonella larval hemocytes during bacterial infection by Bacillus thuringiensis. Journal of Invertebrate Pathology, 98(3): 360-362. https://doi.org/10.1016/j.jip.2008.03.011

Eley, K. L., Halo, L. M., Song, Z., Powles, H., Cox, R. J, Bailey, A. M., Lazarus, C. M. & Simpson, T. J. (2007). Biosynthesis of the 2-Pyridone Tenellin in the Insect Pathogenic Fungus Beauveria bassiana. ChemBioChem, 8(3): 289-297. https://doi.org/10.1002/cbic.200600398

Fauvarque, M-O. & Williams, M. J. (2011). Drosophila cellular immunity: a story of migration and adhesion. Journal of Cell Science 124(9): 1373-1382. https://doi.org/10.1242/jcs.064592

Felton, G. W. & Summers, C. B. (1995). Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29(2): 187-197. https://doi.org/10.1002/arch.940290208

Greenberg, B. (1973). Flies and Disease. Biological and Disease Transmission. (Second edition). Princeton University Press, New Jersey, pp. 92-99.

Hillerton, J. E. & Vincent, J. F. V. (1983). Consideration of the importance of hydrophobic interactions in stabilizing the insect cuticle. International Journal of Biological Macromolecules, 5(3): 163-166. https://doi.org/10.1016/0141-8130(83)90032-6

Holder, D. J. & Keyhani, N. O. (2005). Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Applied and Environmental Microbiology, 71(9): 5260-5266. https://doi.org/10.1128/AEM.71.9.5260-5266.2005

Huang, H., Long, S., Li, M., Gao, F., Du, J., Fan, J. & Peng, X. (2018). Bromo-pentamethine as mitochondria-targeted photosensitizers for cancer cell apoptosis with high efficiency. Dyes and Pigments, 149: 633-638. https://doi.org/10.1016/j.dyepig.2017.11.010

IBM Corporation. (2017). IBM SPSS Statistics for Windows IBM, Armonk, New York, 25.0.

Jiravanichpaisal, P., Lee, B. L. & Söderhäll, K. (2006). Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211(4): 213-236. https://doi.org/10.1016/j.imbio.2005.10.015

Junqueira, L. C. U. & Junqueira, L. M. M. S. (1983). Técnicas Básicas de Citologia e Histologia. Editora Santos, São Paulo, pp. 1-23.

Kanost, M. R. & Clem, R. J. (2012). Insect proteases. In: Lawrence, I. G. (ed). Insect Molecular Biology and Biochemistry. Elsevier: London, pp. 1-16 .

Kumar, S., Christophides, G. K., Cantera, R., Charles, B., Han. Y. S., Meister, S., Dimopoulos, G., Kafatos, F. C. & Barrilas-Mury, C. (2003). The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. PNAS, 100(24): 14139-14144. https://doi.org/10.1073/pnas.2036262100

La-Rosa, W., Lopez, F. L. & Liedo, P. (2002). Beauveria bassiana as a pathogen of the Mexican fruit fly (Diptera: Tephritidae) under laboratory conditions. Journal of Economic Entomology, 95(1): 36-43. https://doi.org/10.1603/0022-0493-95.1.36

Lemaitre, B. & Hoffmann, J. (2007). The host defense of Drosophila melanogaster. Annual Review of Immunology. 25: 697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615

Lewis, M. W., Robalino, I. V. & Keyhani, N. O. (2009). Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana. Microbiology, 155(9): 3110-3120. https://doi.org/10.1099/mic.0.029165-0

Ling, S., Zhang, R., 2011. Effect of friponil on brain and muscle ultrastructure of Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Ecotoxicology and Environmental Safety, 74(5): 1348-1354. https://doi.org/10.1016/j.ecoenv.2011.03.011

Luckhart, S., Giulivi, C., Drexler, A. L., Antonova-Koch, Y., Sakaguchi, D., Napoli, E., Wong, S., Price, M. S., Eigenheer, R., Phinney, B. S., Pakpour, N., Pietri, J. E., Cheung, K., Georgis, M. & Riehle, M. (2013). Sustained activation of akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. Plos Phatogens, 9(2): e1003180. https://doi.org/10.1371/journal.ppat.1003180

Mochi, D. A., Monteiro, A. C., Machado, A. C. R. & Yoshida, L. (2010). Efficiency of entomopathogenic fungi in the control of eggs and larvae of the horn fly Haematobia irritans (Diptera: Muscidae). Veterinary Parasitology, 167(1): 62-66. https://doi.org/10.1016/j.vetpar.2009.09.046

Nakhleh, J., El-Moussawi, L. & Osta, M. A. (2016). The melanization response in insect immunity. Advances in Insect Physiology, 52: 83-109. https://doi.org/10.1016/bs.aiip.2016.11.002

Nascimento, L. & Melnyk, A. (2016). A química dos pesticidas no meio ambiente e na saúde. Revista Mangaio Acadêmico, 1(1): 54-61.

Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P. & Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health, 4: 148. https://doi.org/10.3389/fpubh.2016.00148

Oliveira, S. R., Caleffe, R. R. T., Gigliolli, A. A. S., Moreira, D. R., Conte, H. & Ruvolo-Takasusuki, M. C. C. (2021). Developmental changes in larvae of the oriental latrine fly, Chrysomya megacephala, exposed to deltamethrin. Parasitology Research, 120: 1-7. https://doi.org/10.1007/s00436-020-06933-8

Qi, Z. J., Shi, B. J., Hu, Z. N., Zhang, Y. & Wu, W. J. (2011). Ultrastructural effects of Celangulin V on midgut cells of the oriental armyworm, Mythimna separata walker (Lepidoptera: Noctuidae). Ecotoxicology and Environmental Safety, 74(3): 439-444. https://doi.org/10.1016/j.ecoenv.2010.10.004

Quintero-Zapata, I., Flores-González, M. S., Luna-Santillana, E. J., Arroyo-González, N. & Gandarilla-Pacheco, F. L. (2022). Late effects of Beauveria bassiana on larval stages of Aedes aegypti Linneo‎, ‎1762‎ (Diptera: Culicidae). Brazilian Journal of Biology, 82: e237789. https://doi.org/10.1590/1519-6984.237789

Radogna, F., Cerella, C., Gaigneaux, A., Christov, C., Dicato, M. & Diederich, M. (2016). Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene, 35: 3839-3853. https://doi.org/10.1038/onc.2015.455

Scudeler, E. L., Garcia, A. S. G., Padovani, C. R., Pinheiro, P. F. F. & Santos, D. C. (2016). Cytotoxic effects of neem oil of the predator Ceraeochrysa claveri. Micron, 80: 96-111. http://dx.doi.org/10.1603/ICE.2016.113375

Scudeler, E. L. & Santos, D. C. (2013). Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navas, 1911) (Neuroptera: Chrysopidae). Micron 44: 125-132. https://doi.org/10.1016/j.micron.2012.05.009

Sontigun, N., Sukontason, K. L., Klong-Klaew, T., Sanit, S., Samerjai, C., Somboon, P., Thanapornpoonpong, S-N., Amendt, J. & Sukontason, K. (2018). Bionomics of the oriental latrine fly Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae): temporal fluctuation and reproductive potential. Parasites & Vectors, 11: 415. https://doi.org/10.1186/s13071-018-2986-2

Sparks, T. C. & Nauen, R. (2015). IRAC: mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121: 122-128. https://doi.org/10.1016/j.pestbp.2014.11.014

Strand, M. R. (2008). The insect cellular immune response. Insect Science, 15(1): 1-14. https://doi.org/10.1111/j.1744-7917.2008.00183.x

Sukontason, K., Chaiwong, T., Tayutivutikul, J., Somboon, P., Choochote, W., Piangjai, S. & Source, K. L. S. (2005). Susceptibility of Musca domestica and Chrysomya megacephala to Permethrin and Deltamethrin in Thailand. Journal of Medical Entomology, 42: 812-814. https://doi.org/10.1093/jmedent/42.5.812

Von-Zuben C. J., Stangenhaus, G. & Godoy, W. A. C. (2000). Competição larval em Chrysomya megacephala (F.) (Diptera: Calliphoridae): efeitos de diferentes níveis de agregação larval sobre estimativas de peso, fecundidade e investimento reprodutivo. Revista Brasileira de Biologia, 60(2): 195-203. https://doi.org/10.1590/S0034-71082000000200002

Wanchoo, A., Lewis, M. W. & Keyhani, N. O. (2009). Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiology 155(9): 3121-3133. https://doi.org/10.1099/mic.0.029157-0

Wang, H., Peng, H., Li, W., Cheng, P. & Gong, M. (2021). The Toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Frontiers in Microbiology, 12: 705343. https://doi.org/10.3389/fmicb.2021.705343

Wei, G., Lai, Y., Wang, G., Chen, H., Li, F. & Wang, S. (2017). Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. PNAS, 114(23): 5994-5999. https://doi.org/10.1073/pnas.1703546114

Wen, L. V., Zhang, Z., Zhang, K. Y., Yang, H., Liu, S., Xu, A., Guo, S., Zhao, Q. & Huang, W. (2016). A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angewandte Chemie, 55(34): 9947-9951. https://doi.org/10.1002/anie.201604130

White, R. L., Geden, C. J. & Kaufman, P. E. (2021a) Exposure timing and method affect Beauveria bassiana (Hypocreales: Cordycipitaceae) efficacy against house fly (Diptera: Muscidae) larvae. Journal of Medical Entomology, 58(1): 372-378. https://doi.org/10.1093/jme/tjaa156

White, R. L., Geden, C. J., Kaufman, P. E. & Johnson, D. (2021b). Comparative virulence of Metarhizium anisopliae and four strains of Beauveria bassiana against house fly (Diptera: Muscidae) adults with attempted selection for faster mortality. Journal of Medical Entomology 58(4): 1771-1778. https://doi.org/10.1093/jme/tjab027

Xie, X. Q., Wang, J., Huang, B. F., Ying, S. H. & Feng, M. G. (2010). A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when overexpressed in the fungal pathogen. Applied Microbiology and Biotecnology, 86: 1543-1553. https://doi.org/10.1007/s00253-010-2437-2

Zimmermann, G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17(6): 553-596. https://doi.org/10.1080/09583150701309006

Descargas

Publicado

28/10/2022

Cómo citar

DEVES, V. J.; DAQUILA, B. V.; SCUDELER, E. L. .; CALEFFE, R. R. T.; CONTE, H. Efectos de Beauveria bassiana (Hypocreales: Cordycipitaceae) en el intestino medio de las larvas da Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae). Research, Society and Development, [S. l.], v. 11, n. 14, p. e313111436389 , 2022. DOI: 10.33448/rsd-v11i14.36389. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36389. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas