Exposure to pesticides and overweight - A systematic review
DOI:
https://doi.org/10.33448/rsd-v11i14.36493Keywords:
Agrochemicals; Endocrine disruptors; Overweight; Associated comorbidities.Abstract
This study results from a systematic review to investigate the possible relationship between pesticide exposure and the induction of body overweight in adult individuals. We used the PICO strategy (Population, Interventions/exposure, Comparisons, Outcomes) and the PUBMED, SCIENCE DIRECT and SCOPUS databases to perform the research. In this review, were included 15 studies, classified as research articles. The data presented demonstrated that 86.66% (13/15) of the studies positively correlated overweight and pesticide exposure. Additionally, we observed exposure to pesticides regarding deregulation mechanism of glucose (increase levels of glucose, insulin and homeostasis model assessment insulin resistance index (HOMA-IR)) and deregulation lipid homeostasis (increase levels of triglycerides and decreased levels of high-density lipoprotein (HDL)). These findings proposed an increase in the risk of cardiac diseases and diabetes. As well, these results show that exposure to pesticides can also increase the risk of overweight development. However, further studies are needed to determine the possible mechanism.
References
Abubakar, Y., Tijjani, H., Egbuna, C., Adetunji, C. O., Kala, S., Kryeziu, T. L., Ifemeje, J. C., & Patrick-Iwuanyanwu, K. C. (2020). Pesticides, History, and Classification. In Natural Remedies for Pest, Disease and Weed Control (pp. 29–42). https://doi.org/10.1016/B978-0-12-819304-4.00003-8
Aminov, Z., & Carpenter, D. O. (2020). Serum concentrations of persistent organic pollutants and the metabolic syndrome in Akwesasne Mohawks, a Native American community. Environmental Pollution, 260. https://doi.org/10.1016/j.envpol.2020.114004
Archibeque-Engle, S. L., Tessari, J. D., Winn, D. T., Keefe, T. J., Nett, T. M., & Zheng, T. (1997). Comparison of organochlorine pesticide and polychlorinated biphenyl residues in human breast adipose tissue and serum. Journal of Toxicology and Environmental Health, 52(4), 285–293. https://doi.org/10.1080/00984109708984065
Aronson, K. J., Miller, A. B., Wooleott, C. G., Sterns, E. E., McCready, D. R., Lickley, L. A., Fish, E. B., Hiraki, G. Y., Holloway, C., Ross, T., Hanna, W. M., SenGupta, S. K., & Weber, J. P. (2000). Breast adipose tissue concentrations of polychlorinated biphenyls and other organochlorines and breast cancer risk. Cancer Epidemiology Biomarkers and Prevention, 9(1), 55–63.
Arrebola, J. P., Cuellar, M., Claure, E., Quevedo, M., Antelo, S. R., Mutch, E., Ramirez, E., Fernandez, M. F., Olea, N., & Mercado, L. A. (2012). Concentrations of organochlorine pesticides and polychlorinated biphenyls in human serum and adipose tissue from Bolivia. Environmental Research, 112, 40–47. https://doi.org/10.1016/j.envres.2011.10.006
Azandjeme, C. S., Delisle, H., Fayomi, B., Ayotte, P., Djrolo, F., Houinato, D., & Bouchard, M. (2014). High serum organochlorine pesticide concentrations in diabetics of a cotton producing area of the Benin Republic (West Africa). Environment International, 69, 1–8. https://doi.org/10.1016/j.envint.2014.04.002
Botella, B., Crespo, J., Rivas, A., Cerrillo, I., Olea-Serrano, M. F., & Olea, N. (2004). Exposure of women to organochlorine pesticides in Southern Spain. Environmental Research, 96(1), 34–40. https://doi.org/10.1016/j.envres.2003.10.001
CAMEO Chemicals. (n.d.-a). DDT AND METABOLITES. https://cameochemicals.noaa.gov/chemical/17865
CAMEO Chemicals. (n.d.-b). DIELDRIN. https://cameochemicals.noaa.gov/chemical/3187
CAMEO Chemicals. (n.d.-c). OCTACHLORODIBENZO-P-DIOXIN. https://cameochemicals.noaa.gov/chemical/20807
CAMEO Chemicals. (n.d.-d). HEXACHLOROBENZENE. https://cameochemicals.noaa.gov/chemical/3556
CAMEO Chemicals. (n.d.-e). HEXACHLOROCYCLOHEXANE (ALL ISOMERS). https://cameochemicals.noaa.gov/chemical/18038
CAMEO Chemicals. (n.d.-f). 2,5-DICHLOROPHENOL. https://cameochemicals.noaa.gov/chemical/20162
CAMEO Chemicals. (n.d.-g). CHLORDANE (TECHNICAL MIXTURE AND METABOLITES). https://cameochemicals.noaa.gov/chemical/16288
Cappuccio, F. P., Taggart, F. M., Kandala, N.-B., Currie, A., Peile, E., Stranges, S., & Miller, M. A. (2008). Meta-Analysis of Short Sleep Duration and Obesity in Children and Adults. Sleep, 31(5), 619–626. https://doi.org/10.1093/sleep/31.5.619
Chevrier, J., Dewailly, É., Ayotte, P., Mauriège, P., Després, J. P., & Tremblay, A. (2000). Body weight loss increases plasma and adipose tissue concentrations of potentially toxic pollutants in obese individuals. International Journal of Obesity, 24(10), 1272–1278. https://doi.org/10.1038/sj.ijo.0801380
Combarnous, Y. (2017). Endocrine Disruptor Compounds (EDCs) and agriculture: The case of pesticides. Comptes Rendus Biologies, 340(9–10), 406–409. https://doi.org/10.1016/j.crvi.2017.07.009
Curtis D. Klaassen. (1986). Casarett and Doull’s Toxicology: The Basic Science of Poisons (Macmillan (Ed.); 3rd ed.). https://doi.org/10.1036/0071470514
Dhaliwal, S. S., & Welborn, T. A. (2009). Central Obesity and Multivariable Cardiovascular Risk as Assessed by the Framingham Prediction Scores. American Journal of Cardiology, 103(10), 1403–1407. https://doi.org/10.1016/j.amjcard.2008.12.048
Dirinck, E., Jorens, P. G., Covaci, A., Geens, T., Roosens, L., Neels, H., Mertens, I., & Van Gaal, L. (2011). Obesity and persistent organic pollutants: Possible obesogenic effect of organochlorine pesticides and polychlorinated biphenyls. Obesity, 19(4), 709–714. https://doi.org/10.1038/oby.2010.133
Dirinck, E. L., Dirtu, A. C., Govindan, M., Covaci, A., Van Gaal, L. F., & Jorens, P. G. (2014). Exposure to persistent organic pollutants: Relationship with abnormal glucose metabolism and visceral adiposity. Diabetes Care, 37(7), 1951–1958. https://doi.org/10.2337/dc13-2329
Dusanov, S., Ruzzin, J., Kiviranta, H., Klemsdal, T. O., Retterstøl, L., Rantakokko, P., Airaksinen, R., Djurovic, S., & Tonstad, S. (2018). Associations between persistent organic pollutants and metabolic syndrome in morbidly obese individuals. Nutrition, Metabolism and Cardiovascular Diseases, 28(7), 735–742. https://doi.org/10.1016/j.numecd.2018.03.004
Elagizi, A., Kachur, S., Lavie, C. J., Carbone, S., Pandey, A., Ortega, F. B., & Milani, R. V. (2018). An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases. Progress in Cardiovascular Diseases, 61(2), 142–150. https://doi.org/10.1016/j.pcad.2018.07.003
Grundy, S. M. (1998). Hypertriglyceridemia, Atherogenic Dyslipidemia, and the Metabolic Syndrome. The American Journal of Cardiology, 81(4), 18B-25B. https://doi.org/10.1016/S0002-9149(98)00033-2
He, B., Ni, Y., Jin, Y., & Fu, Z. (2020). Pesticides-induced energy metabolic disorders. Science of the Total Environment, 729, 1–9. https://doi.org/10.1016/j.scitotenv.2020.139033
Henríquez-Hernández, L. A., Luzardo, O. P., Valerón, P. F., Zumbado, M., Serra-Majem, L., Camacho, M., González-Antuña, A., & Boada, L. D. (2017). Persistent organic pollutants and risk of diabetes and obesity on healthy adults: Results from a cross-sectional study in Spain. Science of the Total Environment, 607–608, 1096–1102. https://doi.org/10.1016/j.scitotenv.2017.07.075
Hue, O., Marcotte, J., Berrigan, F., Simoneau, M., Doré, J., Marceau, P., Marceau, S., Tremblay, A., & Teasdale, N. (2007). Plasma concentration of organochlorine compounds is associated with age and not obesity. Chemosphere, 67(7), 1463–1467. https://doi.org/10.1016/j.chemosphere.2006.10.033
Jansen, A., Polder, A., Müller, M. H. B., Skjerve, E., Aaseth, J., & Lyche, J. L. (2018). Increased levels of persistent organic pollutants in serum one year after a great weight loss in humans: Are the levels exceeding health based guideline values? Science of the Total Environment, 622–623, 1317–1326. https://doi.org/10.1016/j.scitotenv.2017.11.241
Janssen, I., Katzmarzyk, P. T., & Ross, R. (2004). Waist circumference and not body mass index explains obesity-related health risk. American Journal of Clinical Nutrition, 79(3), 379–384. https://doi.org/10.1093/ajcn/79.3.379
Katsuki, A., Sumida, Y., Gabazza, E. C., Murashima, S., Furuta, M., Araki-Sasaki, R., Hori, Y., Yano, Y., & Adachi, Y. (2001). Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. Diabetes Care, 24(2), 362–365. https://doi.org/10.2337/diacare.24.2.362
Kim, K. S., Lee, Y. M., Kim, S. G., Lee, I. K., Lee, H. J., Kim, J. H., Kim, J., Moon, H. B., Jacobs, D. R., & Lee, D. H. (2014). Associations of organochlorine pesticides and polychlorinated biphenyls in visceral vs. subcutaneous adipose tissue with type 2 diabetes and insulin resistance. Chemosphere, 94, 151–157. https://doi.org/10.1016/j.chemosphere.2013.09.066
Kohlmeier, L., & Kohlmeier, M. (1995). Adipose tissue as a medium for epidemiologic exposure assessment. Environmental Health Perspectives, 103(suppl 3), 99–106. https://doi.org/10.1289/ehp.95103s399
Lee, D. H., Lee, I. N. K., Jin, S. H., Steffes, M., & Jacobs, D. R. (2007). Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: Results from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care, 30(3), 622–628. https://doi.org/10.2337/dc06-2190
Lee, D. H., Lind, L., Jacobs, D. R., Salihovic, S., van Bavel, B., & Lind, P. M. (2012). Associations of persistent organic pollutants with abdominal obesity in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Environment International, 40(1), 170–178. https://doi.org/10.1016/j.envint.2011.07.010
Lee, D. H., Steffes, M. W., Sjödin, A., Jones, R. S., Needham, L. L., & Jacobs, D. R. (2011). Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0015977
Liang, Y., Liu, D., Zhan, J., Luo, M., Han, J., Wang, P., & Zhou, Z. (2020). New insight into the mechanism of POP-induced obesity: Evidence from DDE-altered microbiota. Chemosphere, 244, 125123. https://doi.org/10.1016/j.chemosphere.2019.125123
Lind, P. M., Lee, D. H., Jacobs, D. R., Salihovic, S., Bavel, B. van, Wolff, M. S., & Lind, L. (2013). Circulating levels of persistent organic pollutants are related to retrospective assessment of life-time weight change. Chemosphere, 90(3), 998–1004. https://doi.org/10.1016/j.chemosphere.2012.07.051
Liu, Q., Wang, Q., Xu, C., Shao, W., Zhang, C., Liu, H., Jiang, Z., & Gu, A. (2017). Organochloride pesticides impaired mitochondrial function in hepatocytes and aggravated disorders of fatty acid metabolism. Scientific Reports, 7(1), 46339. https://doi.org/10.1038/srep46339
Mangum, L. H., Crow, J. A., Stokes, J. V., Howell, G. E., Ross, M. K., Pruett, S. B., & Chambers, J. E. (2016). Exposure to p,p’-DDE Alters Macrophage Reactivity and Increases Macrophage Numbers in Adipose Stromal Vascular Fraction. Toxicological Sciences, 150(1), 169–177. https://doi.org/10.1093/toxsci/kfv315
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412–419. https://doi.org/10.1007/BF00280883
Methley, A. M., Campbell, S., Chew-Graham, C., McNally, R., & Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Services Research, 14(1). https://doi.org/10.1186/s12913-014-0579-0
Min, J. Y., Cho, J. S., Lee, K. J., Park, J. B., Park, S. G., Kim, J. Y., & Min, K. B. (2011). Potential role for organochlorine pesticides in the prevalence of peripheral arterial diseases in obese persons: Results from the National Health and Nutrition Examination Survey 1999-2004. Atherosclerosis, 218(1), 200–206. https://doi.org/10.1016/j.atherosclerosis.2011.04.044
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., Estarli, M., Barrera, E. S. A., Martínez-Rodríguez, R., Baladia, E., Agüero, S. D., Camacho, S., Buhring, K., Herrero-López, A., Gil-González, D. M., Altman, D. G., Booth, A., & Whitlock, E. (2016). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Revista Espanola de Nutricion Humana y Dietetica, 20(2), 148–160. https://doi.org/10.1186/2046-4053-4-1
Monneret, C. (2017). What is an endocrine disruptor? Comptes Rendus - Biologies, 340(9–10), 403–405. https://doi.org/10.1016/j.crvi.2017.07.004
Nonterah, E. A., Debpuur, C., Agongo, G., Amenga-Etego, L., Crowther, N. J., Ramsay, M., & Rexford Oduro, A. (2018). Socio-demographic and behavioural determinants of body mass index among an adult population in rural Northern Ghana: the AWI-Gen study. Global Health Action, 11. https://doi.org/10.1080/16549716.2018.1467588
Nuttall, F. Q. (2015). Body mass index: Obesity, BMI, and health: A critical review. Nutrition Today, 50(3), 117–128. https://doi.org/10.1097/NT.0000000000000092
Pakzad, M., Fouladdel, S., Nili-Ahmadabadi, A., Pourkhalili, N., Baeeri, M., Azizi, E., Sabzevari, O., Ostad, S. N., & Abdollahi, M. (2013). Sublethal exposures of diazinon alters glucose homostasis in Wistar rats: Biochemical and molecular evidences of oxidative stress in adipose tissues. Pesticide Biochemistry and Physiology, 105(1), 57–61. https://doi.org/10.1016/j.pestbp.2012.11.008
Peppa, M., Uribarri, J., & Vlassara, H. (2003). Glucose, Advanced Glycation End Products, and Diabetes Complications: What Is New and What Works. Clinical Diabetes, 21(4), 186–187. https://doi.org/10.2337/diaclin.21.4.186
Raafat, N., Abass, M. A., & Salem, H. M. (2012). Malathion exposure and insulin resistance among a group of farmers in Al-Sharkia governorate. Clinical Biochemistry, 45(18), 1591–1595. https://doi.org/10.1016/j.clinbiochem.2012.07.108
Rönn, M., Lind, L., Bavel, B. van, Salihovic, S., Michaëlsson, K., & Lind, P. M. (2011). Circulating levels of persistent organic pollutants associate in divergent ways to fat mass measured by DXA in humans. Chemosphere, 85(3), 335–343. https://doi.org/10.1016/j.chemosphere.2011.06.095
Singh, V. K., Sarkar, S. K., Saxena, A., & Koner, B. C. (2019). Effect of Subtoxic DDT Exposure on Glucose Uptake and Insulin Signaling in Rat L6 Myoblast-Derived Myotubes. International Journal of Toxicology, 38(4), 303–311. https://doi.org/10.1177/1091581819850577
Smith, A., Yu, X., & Yin, L. (2018). Diazinon exposure activated transcriptional factors CCAAT-enhancer-binding proteins α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) and induced adipogenesis in 3T3-L1 preadipocytes. Pesticide Biochemistry and Physiology, 150(November 2017), 48–58. https://doi.org/10.1016/j.pestbp.2018.07.003
Trasande, L., & Blumberg, B. (2018). Endocrine Disruptors as Obesogens. In Pediatric Obesity (Vol. 304, pp. 243–253). https://doi.org/10.1007/978-3-319-68192-4_14
Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, B. a, Jason, P., Egholm, M., Henrissat, B., Heath, A. C., Knight, R., Gordon, J. I., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., & Gordon, J. I. (2009). A core gut microbiome between lean and obesity twins. Nature, 457(7228), 480–484. https://doi.org/10.1038/nature07540.A
Wei, Y., Zhu, J., & Nguyen, A. (2014). Urinary concentrations of dichlorophenol pesticides and obesity among adult participants in the U.S. National Health and Nutrition Examination Survey (NHANES) 2005-2008. International Journal of Hygiene and Environmental Health, 217(2–3), 294–299. https://doi.org/10.1016/j.ijheh.2013.07.003
World Health Organization. (2020). Obesity and overweight. 2020. https://doi.org/https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Calinca Skonieski; Larissa Silva; Karina Raquel Fagundes; Andressa Talita Nunes; Suelen Finhler; Karine Roversi ; André Lazarin Gallina; Mario Hiroyuki Hirata; Glaucio Monteiro Ferreira; Dalila Moter Benvegnú
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.