Exposição a agrotóxicos e excesso de peso - Uma revisão sistemática
DOI:
https://doi.org/10.33448/rsd-v11i14.36493Palavras-chave:
Agroquímicos; Disruptores endócrinos; Sobrepeso; Comorbidades associadas.Resumo
Este estudo resulta de uma revisão sistemática com objetivo de investigar a possível relação entre a exposição a agrotóxicos e a indução de excesso de peso corporal em indivíduos adultos. Utilizou-se a estratégia PICO (Population, Interventions/exposição, Comparisons, Outcomes) e as bases de dados PUBMED, SCIENCE DIRECT e SCOPUS para realizar a busca. Nesta revisão, foram incluídos 15 estudos. Os dados apresentados demonstraram que 86,66% (13/15) dos estudos correlacionaram positivamente o excesso de peso e a exposição a agrotóxicos. Além disso, observamos relação entre a exposição aos agrotóxicos e o mecanismo de desregulação da glicose (aumento dos níveis de glicose, insulina e índice de resistência à insulina de avaliação do modelo de homeostase (HOMA-IR)) e desregulação da homeostase lipídica (aumento dos níveis de triglicerídeos e diminuição dos níveis de lipoproteína de alta densidade (HDL)). Esses achados propuseram um aumento no risco de doenças cardíacas e diabetes. Além disso, esses resultados mostram que a exposição a agrotóxicos também pode aumentar o risco de desenvolvimento de excesso de peso. No entanto, mais estudos são necessários para determinar o possível mecanismo.
Referências
Abubakar, Y., Tijjani, H., Egbuna, C., Adetunji, C. O., Kala, S., Kryeziu, T. L., Ifemeje, J. C., & Patrick-Iwuanyanwu, K. C. (2020). Pesticides, History, and Classification. In Natural Remedies for Pest, Disease and Weed Control (pp. 29–42). https://doi.org/10.1016/B978-0-12-819304-4.00003-8
Aminov, Z., & Carpenter, D. O. (2020). Serum concentrations of persistent organic pollutants and the metabolic syndrome in Akwesasne Mohawks, a Native American community. Environmental Pollution, 260. https://doi.org/10.1016/j.envpol.2020.114004
Archibeque-Engle, S. L., Tessari, J. D., Winn, D. T., Keefe, T. J., Nett, T. M., & Zheng, T. (1997). Comparison of organochlorine pesticide and polychlorinated biphenyl residues in human breast adipose tissue and serum. Journal of Toxicology and Environmental Health, 52(4), 285–293. https://doi.org/10.1080/00984109708984065
Aronson, K. J., Miller, A. B., Wooleott, C. G., Sterns, E. E., McCready, D. R., Lickley, L. A., Fish, E. B., Hiraki, G. Y., Holloway, C., Ross, T., Hanna, W. M., SenGupta, S. K., & Weber, J. P. (2000). Breast adipose tissue concentrations of polychlorinated biphenyls and other organochlorines and breast cancer risk. Cancer Epidemiology Biomarkers and Prevention, 9(1), 55–63.
Arrebola, J. P., Cuellar, M., Claure, E., Quevedo, M., Antelo, S. R., Mutch, E., Ramirez, E., Fernandez, M. F., Olea, N., & Mercado, L. A. (2012). Concentrations of organochlorine pesticides and polychlorinated biphenyls in human serum and adipose tissue from Bolivia. Environmental Research, 112, 40–47. https://doi.org/10.1016/j.envres.2011.10.006
Azandjeme, C. S., Delisle, H., Fayomi, B., Ayotte, P., Djrolo, F., Houinato, D., & Bouchard, M. (2014). High serum organochlorine pesticide concentrations in diabetics of a cotton producing area of the Benin Republic (West Africa). Environment International, 69, 1–8. https://doi.org/10.1016/j.envint.2014.04.002
Botella, B., Crespo, J., Rivas, A., Cerrillo, I., Olea-Serrano, M. F., & Olea, N. (2004). Exposure of women to organochlorine pesticides in Southern Spain. Environmental Research, 96(1), 34–40. https://doi.org/10.1016/j.envres.2003.10.001
CAMEO Chemicals. (n.d.-a). DDT AND METABOLITES. https://cameochemicals.noaa.gov/chemical/17865
CAMEO Chemicals. (n.d.-b). DIELDRIN. https://cameochemicals.noaa.gov/chemical/3187
CAMEO Chemicals. (n.d.-c). OCTACHLORODIBENZO-P-DIOXIN. https://cameochemicals.noaa.gov/chemical/20807
CAMEO Chemicals. (n.d.-d). HEXACHLOROBENZENE. https://cameochemicals.noaa.gov/chemical/3556
CAMEO Chemicals. (n.d.-e). HEXACHLOROCYCLOHEXANE (ALL ISOMERS). https://cameochemicals.noaa.gov/chemical/18038
CAMEO Chemicals. (n.d.-f). 2,5-DICHLOROPHENOL. https://cameochemicals.noaa.gov/chemical/20162
CAMEO Chemicals. (n.d.-g). CHLORDANE (TECHNICAL MIXTURE AND METABOLITES). https://cameochemicals.noaa.gov/chemical/16288
Cappuccio, F. P., Taggart, F. M., Kandala, N.-B., Currie, A., Peile, E., Stranges, S., & Miller, M. A. (2008). Meta-Analysis of Short Sleep Duration and Obesity in Children and Adults. Sleep, 31(5), 619–626. https://doi.org/10.1093/sleep/31.5.619
Chevrier, J., Dewailly, É., Ayotte, P., Mauriège, P., Després, J. P., & Tremblay, A. (2000). Body weight loss increases plasma and adipose tissue concentrations of potentially toxic pollutants in obese individuals. International Journal of Obesity, 24(10), 1272–1278. https://doi.org/10.1038/sj.ijo.0801380
Combarnous, Y. (2017). Endocrine Disruptor Compounds (EDCs) and agriculture: The case of pesticides. Comptes Rendus Biologies, 340(9–10), 406–409. https://doi.org/10.1016/j.crvi.2017.07.009
Curtis D. Klaassen. (1986). Casarett and Doull’s Toxicology: The Basic Science of Poisons (Macmillan (Ed.); 3rd ed.). https://doi.org/10.1036/0071470514
Dhaliwal, S. S., & Welborn, T. A. (2009). Central Obesity and Multivariable Cardiovascular Risk as Assessed by the Framingham Prediction Scores. American Journal of Cardiology, 103(10), 1403–1407. https://doi.org/10.1016/j.amjcard.2008.12.048
Dirinck, E., Jorens, P. G., Covaci, A., Geens, T., Roosens, L., Neels, H., Mertens, I., & Van Gaal, L. (2011). Obesity and persistent organic pollutants: Possible obesogenic effect of organochlorine pesticides and polychlorinated biphenyls. Obesity, 19(4), 709–714. https://doi.org/10.1038/oby.2010.133
Dirinck, E. L., Dirtu, A. C., Govindan, M., Covaci, A., Van Gaal, L. F., & Jorens, P. G. (2014). Exposure to persistent organic pollutants: Relationship with abnormal glucose metabolism and visceral adiposity. Diabetes Care, 37(7), 1951–1958. https://doi.org/10.2337/dc13-2329
Dusanov, S., Ruzzin, J., Kiviranta, H., Klemsdal, T. O., Retterstøl, L., Rantakokko, P., Airaksinen, R., Djurovic, S., & Tonstad, S. (2018). Associations between persistent organic pollutants and metabolic syndrome in morbidly obese individuals. Nutrition, Metabolism and Cardiovascular Diseases, 28(7), 735–742. https://doi.org/10.1016/j.numecd.2018.03.004
Elagizi, A., Kachur, S., Lavie, C. J., Carbone, S., Pandey, A., Ortega, F. B., & Milani, R. V. (2018). An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases. Progress in Cardiovascular Diseases, 61(2), 142–150. https://doi.org/10.1016/j.pcad.2018.07.003
Grundy, S. M. (1998). Hypertriglyceridemia, Atherogenic Dyslipidemia, and the Metabolic Syndrome. The American Journal of Cardiology, 81(4), 18B-25B. https://doi.org/10.1016/S0002-9149(98)00033-2
He, B., Ni, Y., Jin, Y., & Fu, Z. (2020). Pesticides-induced energy metabolic disorders. Science of the Total Environment, 729, 1–9. https://doi.org/10.1016/j.scitotenv.2020.139033
Henríquez-Hernández, L. A., Luzardo, O. P., Valerón, P. F., Zumbado, M., Serra-Majem, L., Camacho, M., González-Antuña, A., & Boada, L. D. (2017). Persistent organic pollutants and risk of diabetes and obesity on healthy adults: Results from a cross-sectional study in Spain. Science of the Total Environment, 607–608, 1096–1102. https://doi.org/10.1016/j.scitotenv.2017.07.075
Hue, O., Marcotte, J., Berrigan, F., Simoneau, M., Doré, J., Marceau, P., Marceau, S., Tremblay, A., & Teasdale, N. (2007). Plasma concentration of organochlorine compounds is associated with age and not obesity. Chemosphere, 67(7), 1463–1467. https://doi.org/10.1016/j.chemosphere.2006.10.033
Jansen, A., Polder, A., Müller, M. H. B., Skjerve, E., Aaseth, J., & Lyche, J. L. (2018). Increased levels of persistent organic pollutants in serum one year after a great weight loss in humans: Are the levels exceeding health based guideline values? Science of the Total Environment, 622–623, 1317–1326. https://doi.org/10.1016/j.scitotenv.2017.11.241
Janssen, I., Katzmarzyk, P. T., & Ross, R. (2004). Waist circumference and not body mass index explains obesity-related health risk. American Journal of Clinical Nutrition, 79(3), 379–384. https://doi.org/10.1093/ajcn/79.3.379
Katsuki, A., Sumida, Y., Gabazza, E. C., Murashima, S., Furuta, M., Araki-Sasaki, R., Hori, Y., Yano, Y., & Adachi, Y. (2001). Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. Diabetes Care, 24(2), 362–365. https://doi.org/10.2337/diacare.24.2.362
Kim, K. S., Lee, Y. M., Kim, S. G., Lee, I. K., Lee, H. J., Kim, J. H., Kim, J., Moon, H. B., Jacobs, D. R., & Lee, D. H. (2014). Associations of organochlorine pesticides and polychlorinated biphenyls in visceral vs. subcutaneous adipose tissue with type 2 diabetes and insulin resistance. Chemosphere, 94, 151–157. https://doi.org/10.1016/j.chemosphere.2013.09.066
Kohlmeier, L., & Kohlmeier, M. (1995). Adipose tissue as a medium for epidemiologic exposure assessment. Environmental Health Perspectives, 103(suppl 3), 99–106. https://doi.org/10.1289/ehp.95103s399
Lee, D. H., Lee, I. N. K., Jin, S. H., Steffes, M., & Jacobs, D. R. (2007). Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: Results from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care, 30(3), 622–628. https://doi.org/10.2337/dc06-2190
Lee, D. H., Lind, L., Jacobs, D. R., Salihovic, S., van Bavel, B., & Lind, P. M. (2012). Associations of persistent organic pollutants with abdominal obesity in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Environment International, 40(1), 170–178. https://doi.org/10.1016/j.envint.2011.07.010
Lee, D. H., Steffes, M. W., Sjödin, A., Jones, R. S., Needham, L. L., & Jacobs, D. R. (2011). Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0015977
Liang, Y., Liu, D., Zhan, J., Luo, M., Han, J., Wang, P., & Zhou, Z. (2020). New insight into the mechanism of POP-induced obesity: Evidence from DDE-altered microbiota. Chemosphere, 244, 125123. https://doi.org/10.1016/j.chemosphere.2019.125123
Lind, P. M., Lee, D. H., Jacobs, D. R., Salihovic, S., Bavel, B. van, Wolff, M. S., & Lind, L. (2013). Circulating levels of persistent organic pollutants are related to retrospective assessment of life-time weight change. Chemosphere, 90(3), 998–1004. https://doi.org/10.1016/j.chemosphere.2012.07.051
Liu, Q., Wang, Q., Xu, C., Shao, W., Zhang, C., Liu, H., Jiang, Z., & Gu, A. (2017). Organochloride pesticides impaired mitochondrial function in hepatocytes and aggravated disorders of fatty acid metabolism. Scientific Reports, 7(1), 46339. https://doi.org/10.1038/srep46339
Mangum, L. H., Crow, J. A., Stokes, J. V., Howell, G. E., Ross, M. K., Pruett, S. B., & Chambers, J. E. (2016). Exposure to p,p’-DDE Alters Macrophage Reactivity and Increases Macrophage Numbers in Adipose Stromal Vascular Fraction. Toxicological Sciences, 150(1), 169–177. https://doi.org/10.1093/toxsci/kfv315
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412–419. https://doi.org/10.1007/BF00280883
Methley, A. M., Campbell, S., Chew-Graham, C., McNally, R., & Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Services Research, 14(1). https://doi.org/10.1186/s12913-014-0579-0
Min, J. Y., Cho, J. S., Lee, K. J., Park, J. B., Park, S. G., Kim, J. Y., & Min, K. B. (2011). Potential role for organochlorine pesticides in the prevalence of peripheral arterial diseases in obese persons: Results from the National Health and Nutrition Examination Survey 1999-2004. Atherosclerosis, 218(1), 200–206. https://doi.org/10.1016/j.atherosclerosis.2011.04.044
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., Estarli, M., Barrera, E. S. A., Martínez-Rodríguez, R., Baladia, E., Agüero, S. D., Camacho, S., Buhring, K., Herrero-López, A., Gil-González, D. M., Altman, D. G., Booth, A., & Whitlock, E. (2016). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Revista Espanola de Nutricion Humana y Dietetica, 20(2), 148–160. https://doi.org/10.1186/2046-4053-4-1
Monneret, C. (2017). What is an endocrine disruptor? Comptes Rendus - Biologies, 340(9–10), 403–405. https://doi.org/10.1016/j.crvi.2017.07.004
Nonterah, E. A., Debpuur, C., Agongo, G., Amenga-Etego, L., Crowther, N. J., Ramsay, M., & Rexford Oduro, A. (2018). Socio-demographic and behavioural determinants of body mass index among an adult population in rural Northern Ghana: the AWI-Gen study. Global Health Action, 11. https://doi.org/10.1080/16549716.2018.1467588
Nuttall, F. Q. (2015). Body mass index: Obesity, BMI, and health: A critical review. Nutrition Today, 50(3), 117–128. https://doi.org/10.1097/NT.0000000000000092
Pakzad, M., Fouladdel, S., Nili-Ahmadabadi, A., Pourkhalili, N., Baeeri, M., Azizi, E., Sabzevari, O., Ostad, S. N., & Abdollahi, M. (2013). Sublethal exposures of diazinon alters glucose homostasis in Wistar rats: Biochemical and molecular evidences of oxidative stress in adipose tissues. Pesticide Biochemistry and Physiology, 105(1), 57–61. https://doi.org/10.1016/j.pestbp.2012.11.008
Peppa, M., Uribarri, J., & Vlassara, H. (2003). Glucose, Advanced Glycation End Products, and Diabetes Complications: What Is New and What Works. Clinical Diabetes, 21(4), 186–187. https://doi.org/10.2337/diaclin.21.4.186
Raafat, N., Abass, M. A., & Salem, H. M. (2012). Malathion exposure and insulin resistance among a group of farmers in Al-Sharkia governorate. Clinical Biochemistry, 45(18), 1591–1595. https://doi.org/10.1016/j.clinbiochem.2012.07.108
Rönn, M., Lind, L., Bavel, B. van, Salihovic, S., Michaëlsson, K., & Lind, P. M. (2011). Circulating levels of persistent organic pollutants associate in divergent ways to fat mass measured by DXA in humans. Chemosphere, 85(3), 335–343. https://doi.org/10.1016/j.chemosphere.2011.06.095
Singh, V. K., Sarkar, S. K., Saxena, A., & Koner, B. C. (2019). Effect of Subtoxic DDT Exposure on Glucose Uptake and Insulin Signaling in Rat L6 Myoblast-Derived Myotubes. International Journal of Toxicology, 38(4), 303–311. https://doi.org/10.1177/1091581819850577
Smith, A., Yu, X., & Yin, L. (2018). Diazinon exposure activated transcriptional factors CCAAT-enhancer-binding proteins α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) and induced adipogenesis in 3T3-L1 preadipocytes. Pesticide Biochemistry and Physiology, 150(November 2017), 48–58. https://doi.org/10.1016/j.pestbp.2018.07.003
Trasande, L., & Blumberg, B. (2018). Endocrine Disruptors as Obesogens. In Pediatric Obesity (Vol. 304, pp. 243–253). https://doi.org/10.1007/978-3-319-68192-4_14
Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, B. a, Jason, P., Egholm, M., Henrissat, B., Heath, A. C., Knight, R., Gordon, J. I., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., & Gordon, J. I. (2009). A core gut microbiome between lean and obesity twins. Nature, 457(7228), 480–484. https://doi.org/10.1038/nature07540.A
Wei, Y., Zhu, J., & Nguyen, A. (2014). Urinary concentrations of dichlorophenol pesticides and obesity among adult participants in the U.S. National Health and Nutrition Examination Survey (NHANES) 2005-2008. International Journal of Hygiene and Environmental Health, 217(2–3), 294–299. https://doi.org/10.1016/j.ijheh.2013.07.003
World Health Organization. (2020). Obesity and overweight. 2020. https://doi.org/https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Calinca Skonieski; Larissa Silva; Karina Raquel Fagundes; Andressa Talita Nunes; Suelen Finhler; Karine Roversi ; André Lazarin Gallina; Mario Hiroyuki Hirata; Glaucio Monteiro Ferreira; Dalila Moter Benvegnú
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.