Antimicrobial activity of chitosan associated with essential oils in biomedical application: an integrative review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36563

Keywords:

Biomedical Technology; Chitosan; Essential Oil; Products with antimicrobial action.

Abstract

Currently, the use of biomaterials in the health area is constantly evolving. It is known that the development of materials using chitosan, a biocompatible polymer with antimicrobial action, associated with essential oils, a natural substance with numerous biological and antimicrobial properties, has been studied. Therefore, we sought to verify the literature studies related to the antimicrobial activity of chitosan-based biomaterials associated with different essential oils, aimed at the health area. A literature review was carried out in the PubMed and Science Direct databases, from 2018 to 2022, using the descriptors "Chitosan" AND "Essential Oil" AND "Antimicrobial Activity" AND "Dressing". A total of 305 articles were found in the database search, of which eight articles were included in the study, in which it was possible to divide them according to the final product into: (1) film; (2) cryogel, and; (3) nanofibrous scaffolds. Antimicrobial analysis techniques included an agar diffusion test and minimal inhibitory/microbicide concentration. It was possible to verify that the chitosan-based biomaterials alone already showed inhibition of the microbial strains tested and, when associated with essential oils, there was an increase in the action against the strains, making them promising for biomedical applicability.

References

Abdollahzadeh, E., Nematollahi, A., & Hosseini, H. (2021). Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends in Food Science & Technology, 110, 291-303. doi: 10.1016/j.tifs.2021.01.084

Aleksic, V., & Knezevic, P. (2014). Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiological Research, 169(4), 240-254. doi: 10.1016/j.micres.2013.10.003

Aljaafari, M. N., AlAli, A. O., Baqais, L., Alqubaisy, M., AlAli, M., Molouki, A., Ong-Abdullah, J., Abushelaibi, A., Lai, K. S., & Lim, S. H. E. (2021). An overview of the potential therapeutic applications of essential oils. Molecules, 26(3), 628. doi: 10.3390/molecules26030628

Amalraj, A., Haponiuk, J. T., Thomas, S., & Gopi, S. (2020). Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. International Journal of Biological Macromolecules, 151, 366-375. doi: 10.1016/j.ijbiomac.2020.02.176

Ardekani, N. T., Khorram, M., Zomorodian, K., Yazdanpanah, S., Veisi, H., & Veisi, H. (2019). Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. International Journal of Biological Macromolecules, 125, 743-750. doi: 10.1016/j.ijbiomac.2018.12.085

Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. International Journal of Biological Macromolecules, 150, 1072-1083. doi: 10.1016/j.ijbiomac.2019.10.113

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71-79. doi: 10.1016/j.jpha.2015.11.005

Barzegar, S., Zare, M. R., Shojaei, F., Zareshahrabadi, Z., Koohi-Hosseinabadi, O., Saharkhiz, M. J., Iraji, A., Zomorodian, K., & Khorram, M. (2021). Core-shell chitosan/PVA-based nanofibrous scaffolds loaded with Satureja mutica or Oliveria decumbens essential oils as enhanced antimicrobial wound dressing. International Journal of Pharmaceutics, 597, 120288. doi: 10.1016/j.ijpharm.2021.120288

Benkova, M., Soukup, O., & Marek, J. (2020). Antimicrobial susceptibility testing: currently used methods and devices and the near future in clinical practice. Journal of Applied Microbiology, 129(4), 806-822. doi: 10.1111/jam.14704

Bölgen, N., Demir, D., Yalçın, M. S., & Özdemir, S. (2020). Development of Hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. International Journal of Biological Macromolecules, 161, 1581-1590. doi: 10.1016/j.ijbiomac.2020.08.056

Confederat, L. G., Tuchilus, C. G., Dragan, M., Sha’at, M., & Dragostin, O. M. (2021). Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules, 26(12), 3694. doi:10.3390/molecules26123694

De Masi, A., Tonazzini, I., Masciullo, C., Mezzena, R., Chiellini, F., Puppi, D., & Cecchini, M. (2019). Chitosan films for regenerative medicine: fabrication methods and mechanical characterization of nanostructured chitosan films. Biophysical Reviews, 11(5), 807-815. doi:10.1007/s12551-019-00591-6

El-Tarabily, K. A., El-Saadony, M. T., Alagawany, M., Arif, M., Batiha, G. E., Khafaga, A. F., Elwan, H. A. M., Elnesr, S. S., & Abd El-Hack, M. E. (2021). Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi Journal of Biological Sciences, 28(9), 5145-5156. doi: 10.1016/j.sjbs.2021.05.033

Espíndola Sobczyk, A., Luchese, C. L., Faccin, D. J. L., & Tessaro, I. C. (2021). Influence of replacing oregano essential oil by ground oregano leaves on chitosan/alginate-based dressings properties. International Journal of Biological Macromolecules, 181, 51-59. doi: 10.1016/j.ijbiomac.2021.03.084

Foster, L. J. R., & Butt, J. (2011). Chitosan films are NOT antimicrobial. Biotechnology Letters, 33(2), 417-421. doi:10.1007/s10529-010-0435-1

Hadidi, M., Pouramin, S., Adinepour, F., Haghani, S., & Jafari, S. M. (2020). Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohydrate Polymers, 236, 116075. doi: 10.1016/j.carbpol.2020.116075

Indurkar, A., Pandit, A., Jain, R., & Dandekar, P. (2021). Plant-based biomaterials in tissue engineering. Bioprinting, 21, e00127. doi: 10.1016/j.bprint.2020.e00127

Inta, O., Yoksan, R., & Limtrakul, J. (2014). Hydrophobically modified chitosan: a bio-based material for antimicrobial active film. Materials Science and Engineering: C, 42, 569-577. doi: 10.1016/j.msec.2014.05.076

Jridi, M., Hajji, S., Ayed, H. B., Lassoued, I., Mbarek, A., Kammoun, M., Souissi, N., & Nasri, M. (2014). Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. International Journal of Biological Macromolecules, 67, 373-379. doi: 10.1016/j.ijbiomac.2014.03.054

Jugreet, B. S., Suroowan, S., Rengasamy, R. K., & Mahomoodally, M. F. (2020). Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends in Food Science & Technology, 101, 89-105. doi: 10.1016/j.tifs.2020.04.025

Jung, E. J., Youn, D. K., Lee, S. H., No, H. K., Ha, J. G., & Prinyawiwatkul, W. (2010). Antibacterial activity of chitosans with different degrees of deacetylation and viscosities. International Journal of Food Science & Technology, 45(4), 676-682. doi: 10.1111/j.1365-2621.2010.02186.x

Lamarra, J., Calienni, M. N., Rivero, S., & Pinotti, A. (2020). Electrospun nanofibers of poly (vinyl alcohol) and chitosan-based emulsions functionalized with cabreuva essential oil. International Journal of Biological Macromolecules, 160, 307-318. doi: 10.1016/j.ijbiomac.2020.05.096

Liu, P., Chen, W., Liu, C., Tian, M., & Liu, P. (2019). A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Scientific Reports, 9(1), 1-12. doi:10.1038/s41598-019-46061-7

Madni, A., Kousar, R., Naeem, N., & Wahid, F. (2021). Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. Journal of Bioresources and Bioproducts, 6(1), 11-25. doi: 10.1016/j.jobab.2021.01.002

Matica, M. A., Aachmann, F. L., Tøndervik, A., Sletta, H., & Ostafe, V. (2019). Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. International Journal of Molecular Sciences, 20(23), 5889. doi: 10.3390/ijms20235889

Ngo, D. H., Vo, T. S., Ngo, D. N., Kang, K. H., Je, J. Y., Pham, H. N. D., Byum, H. G. & Kim, S. K. (2015). Biological effects of chitosan and its derivatives. Food Hydrocolloids, 51, 200-216. doi: 10.1016/j.foodhyd.2015.05.023

Orchard, A., Sandasi, M., Kamatou, G., Viljoen, A., & van Vuuren, S. (2017). The in vitro antimicrobial activity and chemometric modelling of 59 commercial essential oils against pathogens of dermatological relevance. Chemistry & Biodiversity, 14(1), e1600218. doi: 10.1002/cbdv.201600218

Santos, E. P., Nicácio, P. H. M., Coêlho Barbosa, F., Nunes da Silva, H., Andrade, A. L. S., Lia Fook, M. V., Silva, S. M. L., & Farias Leite, I. (2019). Chitosan/essential oils formulations for potential use as wound dressing: physical and antimicrobial properties. Materials, 12(14), 2223. doi: 10.3390/ma12142223

Râpă, M., Gaidau, C., Mititelu-Tartau, L., Berechet, M. D., Berbecaru, A. C., Rosca, I., Chiriac, A. P., Matei, E., Predescu, A. M., & Predescu, C. (2021). Bioactive collagen hydrolysate-chitosan/essential oil electrospun nanofibers designed for medical wound dressings. Pharmaceutics, 13(11), 1939. doi: 10.3390/pharmaceutics13111939

Ren, Q., Zhu, X., Li, W., Wu, M., Cui, S., Ling, Y., Ma, X., Wang, G. Wang, L., & Zheng, W. (2022). Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming. International Journal of Biological Macromolecules, 205, 740-748. doi: 10.1016/j.ijbiomac.2022.03.107

Riaz Rajoka, M. S., Mehwish, H. M., Wu, Y., Zhao, L., Arfat, Y., Majeed, K., & Anwaar, S. (2020). Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives. Critical Reviews in Biotechnology, 40(3), 365-379. doi: 10.1080/07388551.2020.1713719

Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D. A., & Quiñones-Olvera, L. F. (2015). Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Research International, 2015. doi: 10.1155/2015/821279

Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R., Martín-Belloso, O., Pan, Z., & McHugh, T. H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering, 81(3), 634-641. doi: 10.1016/j.jfoodeng.2007.01.007

Saad, N. Y., Muller, C. D., & Lobstein, A. (2013). Major bioactivities and mechanism of action of essential oils and their components. Flavour and Fragrance Journal, 28(5), 269-279. doi: 10.1002/ffj.3165

Shariatinia, Z. (2019). Pharmaceutical applications of chitosan. Advances in Colloid and Interface Science, 263, 131-194. doi: 10.1016/j.cis.2018.11.008

Sikorski, D., Bauer, M., Frączyk, J., & Draczyński, Z. (2022). Antibacterial and Antifungal Properties of Modified Chitosan Nonwovens. Polymers, 14(9), 1690. doi: 10.3390/polym14091690

Sultankulov, B., Berillo, D., Sultankulova, K., Tokay, T., & Saparov, A. (2019). Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules, 9(9), 470. doi: 10.3390/biom9090470

De Sousa, L. M. M., Firmino, C. F., Marques-Vieira, C. M. A., Severino, S. S. P., & Pestana, H. C. F. C. (2018). Revisões da literatura científica: tipos, métodos e aplicações em enfermagem. Revista Portuguesa de Enfermagem de Reabilitação, 1(1), 45-54. doi: 10.33194/rper.2018.v1.n1.07.4391

Souza, M. T. D., Silva, M. D. D., & Carvalho, R. D. (2010). Revisão integrativa: o que é e como fazer. Einstein (São Paulo), 8, 102-106. doi: 10.1590/s1679-45082010rw1134

Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. doi: 10.1016/j.micpath.2019.103580

Xu, J. G., Liu, T., Hu, Q. P., & Cao, X. M. (2016). Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules, 21(9), 1194. doi: 10.3390/molecules21091194

Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., & Szumny, A. (2019). Essential oils as antimicrobial agents—myth or real alternative?. Molecules, 24(11), 2130. doi: 10.3390/molecules24112130

Published

02/11/2022

How to Cite

BRIXNER, B.; SILVA, C. de M. da; POLLO, L. D.; RENNER, J. D. P. Antimicrobial activity of chitosan associated with essential oils in biomedical application: an integrative review. Research, Society and Development, [S. l.], v. 11, n. 14, p. e447111436563, 2022. DOI: 10.33448/rsd-v11i14.36563. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36563. Acesso em: 15 jan. 2025.

Issue

Section

Review Article