Antimicrobial activity of chitosan associated with essential oils in biomedical application: an integrative review
DOI:
https://doi.org/10.33448/rsd-v11i14.36563Keywords:
Biomedical Technology; Chitosan; Essential Oil; Products with antimicrobial action.Abstract
Currently, the use of biomaterials in the health area is constantly evolving. It is known that the development of materials using chitosan, a biocompatible polymer with antimicrobial action, associated with essential oils, a natural substance with numerous biological and antimicrobial properties, has been studied. Therefore, we sought to verify the literature studies related to the antimicrobial activity of chitosan-based biomaterials associated with different essential oils, aimed at the health area. A literature review was carried out in the PubMed and Science Direct databases, from 2018 to 2022, using the descriptors "Chitosan" AND "Essential Oil" AND "Antimicrobial Activity" AND "Dressing". A total of 305 articles were found in the database search, of which eight articles were included in the study, in which it was possible to divide them according to the final product into: (1) film; (2) cryogel, and; (3) nanofibrous scaffolds. Antimicrobial analysis techniques included an agar diffusion test and minimal inhibitory/microbicide concentration. It was possible to verify that the chitosan-based biomaterials alone already showed inhibition of the microbial strains tested and, when associated with essential oils, there was an increase in the action against the strains, making them promising for biomedical applicability.
References
Abdollahzadeh, E., Nematollahi, A., & Hosseini, H. (2021). Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends in Food Science & Technology, 110, 291-303. doi: 10.1016/j.tifs.2021.01.084
Aleksic, V., & Knezevic, P. (2014). Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiological Research, 169(4), 240-254. doi: 10.1016/j.micres.2013.10.003
Aljaafari, M. N., AlAli, A. O., Baqais, L., Alqubaisy, M., AlAli, M., Molouki, A., Ong-Abdullah, J., Abushelaibi, A., Lai, K. S., & Lim, S. H. E. (2021). An overview of the potential therapeutic applications of essential oils. Molecules, 26(3), 628. doi: 10.3390/molecules26030628
Amalraj, A., Haponiuk, J. T., Thomas, S., & Gopi, S. (2020). Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. International Journal of Biological Macromolecules, 151, 366-375. doi: 10.1016/j.ijbiomac.2020.02.176
Ardekani, N. T., Khorram, M., Zomorodian, K., Yazdanpanah, S., Veisi, H., & Veisi, H. (2019). Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. International Journal of Biological Macromolecules, 125, 743-750. doi: 10.1016/j.ijbiomac.2018.12.085
Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. International Journal of Biological Macromolecules, 150, 1072-1083. doi: 10.1016/j.ijbiomac.2019.10.113
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71-79. doi: 10.1016/j.jpha.2015.11.005
Barzegar, S., Zare, M. R., Shojaei, F., Zareshahrabadi, Z., Koohi-Hosseinabadi, O., Saharkhiz, M. J., Iraji, A., Zomorodian, K., & Khorram, M. (2021). Core-shell chitosan/PVA-based nanofibrous scaffolds loaded with Satureja mutica or Oliveria decumbens essential oils as enhanced antimicrobial wound dressing. International Journal of Pharmaceutics, 597, 120288. doi: 10.1016/j.ijpharm.2021.120288
Benkova, M., Soukup, O., & Marek, J. (2020). Antimicrobial susceptibility testing: currently used methods and devices and the near future in clinical practice. Journal of Applied Microbiology, 129(4), 806-822. doi: 10.1111/jam.14704
Bölgen, N., Demir, D., Yalçın, M. S., & Özdemir, S. (2020). Development of Hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. International Journal of Biological Macromolecules, 161, 1581-1590. doi: 10.1016/j.ijbiomac.2020.08.056
Confederat, L. G., Tuchilus, C. G., Dragan, M., Sha’at, M., & Dragostin, O. M. (2021). Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules, 26(12), 3694. doi:10.3390/molecules26123694
De Masi, A., Tonazzini, I., Masciullo, C., Mezzena, R., Chiellini, F., Puppi, D., & Cecchini, M. (2019). Chitosan films for regenerative medicine: fabrication methods and mechanical characterization of nanostructured chitosan films. Biophysical Reviews, 11(5), 807-815. doi:10.1007/s12551-019-00591-6
El-Tarabily, K. A., El-Saadony, M. T., Alagawany, M., Arif, M., Batiha, G. E., Khafaga, A. F., Elwan, H. A. M., Elnesr, S. S., & Abd El-Hack, M. E. (2021). Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi Journal of Biological Sciences, 28(9), 5145-5156. doi: 10.1016/j.sjbs.2021.05.033
Espíndola Sobczyk, A., Luchese, C. L., Faccin, D. J. L., & Tessaro, I. C. (2021). Influence of replacing oregano essential oil by ground oregano leaves on chitosan/alginate-based dressings properties. International Journal of Biological Macromolecules, 181, 51-59. doi: 10.1016/j.ijbiomac.2021.03.084
Foster, L. J. R., & Butt, J. (2011). Chitosan films are NOT antimicrobial. Biotechnology Letters, 33(2), 417-421. doi:10.1007/s10529-010-0435-1
Hadidi, M., Pouramin, S., Adinepour, F., Haghani, S., & Jafari, S. M. (2020). Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohydrate Polymers, 236, 116075. doi: 10.1016/j.carbpol.2020.116075
Indurkar, A., Pandit, A., Jain, R., & Dandekar, P. (2021). Plant-based biomaterials in tissue engineering. Bioprinting, 21, e00127. doi: 10.1016/j.bprint.2020.e00127
Inta, O., Yoksan, R., & Limtrakul, J. (2014). Hydrophobically modified chitosan: a bio-based material for antimicrobial active film. Materials Science and Engineering: C, 42, 569-577. doi: 10.1016/j.msec.2014.05.076
Jridi, M., Hajji, S., Ayed, H. B., Lassoued, I., Mbarek, A., Kammoun, M., Souissi, N., & Nasri, M. (2014). Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. International Journal of Biological Macromolecules, 67, 373-379. doi: 10.1016/j.ijbiomac.2014.03.054
Jugreet, B. S., Suroowan, S., Rengasamy, R. K., & Mahomoodally, M. F. (2020). Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends in Food Science & Technology, 101, 89-105. doi: 10.1016/j.tifs.2020.04.025
Jung, E. J., Youn, D. K., Lee, S. H., No, H. K., Ha, J. G., & Prinyawiwatkul, W. (2010). Antibacterial activity of chitosans with different degrees of deacetylation and viscosities. International Journal of Food Science & Technology, 45(4), 676-682. doi: 10.1111/j.1365-2621.2010.02186.x
Lamarra, J., Calienni, M. N., Rivero, S., & Pinotti, A. (2020). Electrospun nanofibers of poly (vinyl alcohol) and chitosan-based emulsions functionalized with cabreuva essential oil. International Journal of Biological Macromolecules, 160, 307-318. doi: 10.1016/j.ijbiomac.2020.05.096
Liu, P., Chen, W., Liu, C., Tian, M., & Liu, P. (2019). A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Scientific Reports, 9(1), 1-12. doi:10.1038/s41598-019-46061-7
Madni, A., Kousar, R., Naeem, N., & Wahid, F. (2021). Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. Journal of Bioresources and Bioproducts, 6(1), 11-25. doi: 10.1016/j.jobab.2021.01.002
Matica, M. A., Aachmann, F. L., Tøndervik, A., Sletta, H., & Ostafe, V. (2019). Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. International Journal of Molecular Sciences, 20(23), 5889. doi: 10.3390/ijms20235889
Ngo, D. H., Vo, T. S., Ngo, D. N., Kang, K. H., Je, J. Y., Pham, H. N. D., Byum, H. G. & Kim, S. K. (2015). Biological effects of chitosan and its derivatives. Food Hydrocolloids, 51, 200-216. doi: 10.1016/j.foodhyd.2015.05.023
Orchard, A., Sandasi, M., Kamatou, G., Viljoen, A., & van Vuuren, S. (2017). The in vitro antimicrobial activity and chemometric modelling of 59 commercial essential oils against pathogens of dermatological relevance. Chemistry & Biodiversity, 14(1), e1600218. doi: 10.1002/cbdv.201600218
Santos, E. P., Nicácio, P. H. M., Coêlho Barbosa, F., Nunes da Silva, H., Andrade, A. L. S., Lia Fook, M. V., Silva, S. M. L., & Farias Leite, I. (2019). Chitosan/essential oils formulations for potential use as wound dressing: physical and antimicrobial properties. Materials, 12(14), 2223. doi: 10.3390/ma12142223
Râpă, M., Gaidau, C., Mititelu-Tartau, L., Berechet, M. D., Berbecaru, A. C., Rosca, I., Chiriac, A. P., Matei, E., Predescu, A. M., & Predescu, C. (2021). Bioactive collagen hydrolysate-chitosan/essential oil electrospun nanofibers designed for medical wound dressings. Pharmaceutics, 13(11), 1939. doi: 10.3390/pharmaceutics13111939
Ren, Q., Zhu, X., Li, W., Wu, M., Cui, S., Ling, Y., Ma, X., Wang, G. Wang, L., & Zheng, W. (2022). Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming. International Journal of Biological Macromolecules, 205, 740-748. doi: 10.1016/j.ijbiomac.2022.03.107
Riaz Rajoka, M. S., Mehwish, H. M., Wu, Y., Zhao, L., Arfat, Y., Majeed, K., & Anwaar, S. (2020). Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives. Critical Reviews in Biotechnology, 40(3), 365-379. doi: 10.1080/07388551.2020.1713719
Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D. A., & Quiñones-Olvera, L. F. (2015). Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Research International, 2015. doi: 10.1155/2015/821279
Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R., Martín-Belloso, O., Pan, Z., & McHugh, T. H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering, 81(3), 634-641. doi: 10.1016/j.jfoodeng.2007.01.007
Saad, N. Y., Muller, C. D., & Lobstein, A. (2013). Major bioactivities and mechanism of action of essential oils and their components. Flavour and Fragrance Journal, 28(5), 269-279. doi: 10.1002/ffj.3165
Shariatinia, Z. (2019). Pharmaceutical applications of chitosan. Advances in Colloid and Interface Science, 263, 131-194. doi: 10.1016/j.cis.2018.11.008
Sikorski, D., Bauer, M., Frączyk, J., & Draczyński, Z. (2022). Antibacterial and Antifungal Properties of Modified Chitosan Nonwovens. Polymers, 14(9), 1690. doi: 10.3390/polym14091690
Sultankulov, B., Berillo, D., Sultankulova, K., Tokay, T., & Saparov, A. (2019). Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules, 9(9), 470. doi: 10.3390/biom9090470
De Sousa, L. M. M., Firmino, C. F., Marques-Vieira, C. M. A., Severino, S. S. P., & Pestana, H. C. F. C. (2018). Revisões da literatura científica: tipos, métodos e aplicações em enfermagem. Revista Portuguesa de Enfermagem de Reabilitação, 1(1), 45-54. doi: 10.33194/rper.2018.v1.n1.07.4391
Souza, M. T. D., Silva, M. D. D., & Carvalho, R. D. (2010). Revisão integrativa: o que é e como fazer. Einstein (São Paulo), 8, 102-106. doi: 10.1590/s1679-45082010rw1134
Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. doi: 10.1016/j.micpath.2019.103580
Xu, J. G., Liu, T., Hu, Q. P., & Cao, X. M. (2016). Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules, 21(9), 1194. doi: 10.3390/molecules21091194
Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., & Szumny, A. (2019). Essential oils as antimicrobial agents—myth or real alternative?. Molecules, 24(11), 2130. doi: 10.3390/molecules24112130
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Betina Brixner; Chana de Medeiros da Silva; Liliane Damaris Pollo; Jane Dagmar Pollo Renner
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.