Beneficial and harmful intestinal microbiota in poultry farming: Review

Authors

  • Marcela Christofoli Universidade Federal de Goiás
  • Christiane Silva Souza Universidade Federal Rural do Rio de Janeiro
  • Thiago Ferreira Costa Instituto Federal de Educação, Ciência e Tecnologia Goiano
  • Samantha Leandro de Sousa Andrade Alexandrino Instituto Federal de Educação, Ciência e Tecnologia Goiano
  • Priscila Paula de Faria Instituto Federal de Educação, Ciência e Tecnologia Goiano
  • Cintia Silva Minafra-Rezende Universidade Federal de Goiás
  • Fabiana Ramos dos Santos Instituto Federal de Educação, Ciência e Tecnologia Goiano
  • Cibele Silva Minafra Instituto Federal de Educação, Ciência e Tecnologia Goiano
  • Paulo Sérgio Pereira Instituto Federal de Educação, Ciência e Tecnologia Goiano

DOI:

https://doi.org/10.33448/rsd-v9i7.3667

Keywords:

Dysbiosis; Enteritis; Intestinal integrity; Microbioma; Pathogens.

Abstract

Currently, dysbiosis, rupture of the intestinal barrier and inflammation have become concerns of industrial poultry, since they culminate in the physiological and productive impairment of birds. The objective was to discuss the role of the intestinal microbiota of birds in animal development, as well as to highlight the benefits and/or losses caused by these microorganisms. The methodology adopted was a descriptive study, with a bibliographic review of scientific papers published in different indexed bases, with a time frame of the last decades. It was found that the use of sequencing the RNA ribosomal gene (rRNA) 16S is an important tool to identify and enumerate the intestinal bacteria present in production birds. Regarding the composition of the microbiota, in the small intestine there are mainly Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, Bacterioides, Clostridium, Fusobacterium and coliforms. In the large intestine, Lactobacillus, Bacterioides, Proteobacteria, Bacillus, Clostridium and Bifidobacterium. In the small intestine, bacteria participate in metabolism by improving nutrient absorption, hydrolyze polysaccharides to produce short-chain fatty acids, which will be absorbed and participate in important metabolic pathways in the supply of carbon and energy sources to birds. Despite the benefits of the microbiota in promoting a stable intestinal environment, in unfavorable situations, such as inadequate breeding, it can act as pathogens, produce toxic metabolites and impair the productive performance of birds.

Author Biography

Marcela Christofoli, Universidade Federal de Goiás

Doutoranda em Biotecnologia e Biodiversidade pela Universidade Federal de Goiás. Mestre em Ciências Agrárias pelo Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde. Graduado em Ciências Biológicas pela Universidade Estadual de Goiás (2006). Graduado em Química pela Universidade de Uberaba (2017) e possui duas especializações pela Universidade Federal de Goiás. Professora de Química Geral dos cursos de Engenharia Civil, Engenharia de Produção, Engenharia Ambiental e Sanitária e nos cursos de Enfermagem e Farmácia da Faculdade de Iporá (FAI). Professora de Química Aplicada à Biologia e Bioquímica no curso de Ciências Biológicas da Universidade Estadual de Goiás - Unidade de Iporá (UEG).Pesquisa em identificação de produtos naturais com atividades inseticidas, microbiológicos, antioxidantes,

References

Adedokun, S.A., & Olojede, O.C. (2019). Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Frontiers in Veterinary Science, 5(348): 1-11.

Apajalahti, J. & Vienola, K. (2016). Interaction between chicken intestinal microbiota and protein digestion. Animal Feed Science and Technology, 221:323-330.

Arnold, M.E., Martelli, F., Mclaren, I., & Davies, R.H. 2014. Estimation of the Rate of Egg Contamination from Salmonella-Infected Chickens. Zoonoses and Public Health, 61(1), 18-27.

Ballou A.L., Ali R.A., Mendoza M.A., Ellis J.C., Hassan H.M., Croom W.J., & Koci, M.D. (2016). Development of the chick microbiome: how early exposure influences future microbial diversity. Frontiers in Veterinary Science. 3:1-12.

Best, A.A., Porter, A.L., Fraley, S.M., & Fraley, G.S. (2017). Characterization of gut microbiome dynamics in developing Pekin ducks and impact of management system. Frontiers in Microbiology, 4:125.

Biasato, I., Ferrocino, I., Grego, E., Dabbou, S., Gai, F., Gasco, L., Cocolin, L., Capucchio, M..T. & Schiavone, A. (2019). Gut microbiota and mucin composition in female broiler chickens fed diets including yellow mealworm (Tenebrio molitor, L.). Animals, 9(5), 213:1-15.

Biswas, A., & Kobayashi, K.S. (2013). Regulation of intestinal microbiota by the NLR protein family. International Immunology, 25: 207-214.

Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current perspectives of the chicken gastrointestinal tract and its microbiome. Computational and Structural Biotechnology Journal, 16:131-139.

Bortoluzzi, C., Vieira, B.S., Hofacre, C., & Applegate, T.J. (2019). Effect of different challenge models to induce necrotic enteritis on the growth performance and intestinal microbiota of broiler chickens. Poultry science, 98(7), 2800-2812.

Brandl, K., Kumar, V., & Eckmann, L. (2017). Gut-liver axis at the frontier of host-microbial interactions. American Journal of Physiology-Gastrointestinal and Liver Physiology, 312(5), G413-G419.

Brizio, A.P.D.R.; Marin, G.; Schittler, L.; Prentice, C. (2015). Visible contamination in broiler carcasses and its relation to the stages of evisceration in poultry slaughter. International Food Research Journal, 22(1): 59-63.

Burt, D.W. (2005). Chicken genome: Current status and future opportunities. Genome Research, 15: 1692-1698.

Carrasco, J.M.D, Casanova, N.A., & Miyakawa, M.E.F. (2019). Microbiota, gut health and chicken productivity: what is the connection?. Microorganisms, 7(374): 1-15.

Castellanos, L.R., Donado-Godoy, P., León, M., Clavijo, V., Arevalo, A., Bernal, J.F., Timmerman, A.J., Mevius, D.J., Wagenaar, J.A., & Hordijk, J. (2017). High heterogeneity of Escherichia coli sequence types harbouring ESBL/AmpC genes on IncI1 plasmids in the Colombian poultry chain. Plos One, 12(1), e0170777.

Celi, P., Verlhac, V., Pérez, C. E., Schmeisser J., & Kluenter A.M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250:9-31.

Centers for Disease Control and Prevention – CDC. (2018). FoodNet Fast Home Page. Disponível em: <https://www.cdc.gov/foodnet/foodnet-fast.html>.

Chaucheyras-Durand, F., & Durand, H. (2010). Probiotics in animal nutrition and health. Benef. Microbes, 1(1):3-9.

Clavijo, V.M., & Flórez, J.V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3): 1006-1021.

Crabb, H.K., Gilkerson, J.R.; Browning, G.F. (2019). Only the age of the chicken is contaminated by Salmonella enterica in eggs? Food Microbiology, 77, 1–9.

Dayou, S., Lin, B., Qian, Q., Shanshan, Z., Meimei, Y., Shining, G., Qiuhong, L., & Cui L. 2019. Impact of gut microbiota structure in heat-stressed broilers. Poultry Science, 98 (6): 2405-2413.

Denbow, D.M. (2014). Gastrointestinal anatomy and physiology. In: Scanes, C. (Ed.), Sturkie’s Avian Physiology. 6th ed., Academic Press, New York, 337-366.

DiAngelo, J.R., Bland, M., Bambina, S., Cherry, S., & Birnbaum, M. (2009). The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proceedings of the National Academy of Sciences, 106(49): 20853-20858.

Dibner, J.J., & Richards, J.D. (2005). Antibiotic growth promoters in agriculture: history and mode of action. Poultry Science, 84(4): 634-643.

Ding, J., Dai, R., Yang, L., He, C., Xu, K., Liu, S., Zhao, W., Xiao, L., Luo, L., Zhang, Y., & Meng, H. (2017). Inheritance and establishment of gut microbiota in chickens. Frontier in Microbiology, 8: 1967.

Ducatelle, R., Goossens, E., Meyer, F.D., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Veterinary Research, 49(43): 1-9.

Elnesr, S.S., Alagawany, M., Elwan, H.M., Fathi, M.A., & Farag, M.R. (2020). Effect of sodium butyrate on intestinal health of poultry – a Review. Annals of Animal Science, 20(1): 29-41.

Figueira, S.V., Mota, B.P., Leonídio, A.R.A., Nascimento, G.M., & Andrade, M.A. 2014. Microbiota intestinal das aves de produção. Enciclopédia Biosfera, 10(18), 2181-2208.

Gao, P., Hou, Q., Kwok, L.Y., Huo, D., Feng, S., & Heping, Z. (2017). Effect of feeding Lactobacillus plantarum P-8 on the faecal microbiota of broiler chickens exposed to lincomycin. Science Bulletin, 62(2): 105-113.

Golder, H.M., Geier, M.S., Forder, R.E.A., Hynd, P.I., & Hughes, R.J. (2011). Effects of necrotic enteritis challenge on intestinal micro-architecture and mucin profile. British Poultry Science, 52(4): 500-506.

Kogut, M.H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250: 32-40.

Kogut, M.H., & Oakley, B.B. (2016). Spatial and temporal changes in the broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression. Frontiers in Veterinary Science, 3:1-12.

Kumar, S., Chen, C., Indugu, N., Werlang, G.O., Singh, M., Kim, W.K., & Thippareddi, H. (2018). Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. Plos One, 13: e0192450.

Li, K., Bihan, M., Yooseph, S. & Methé, B.A. (2012). Analyses of the microbial diversity across the human microbiome. PLOS One, 7(6): e32118.

Loddi, M.M. (2001). Probióticos e prebióticos na nutrição de aves. Revista CFMV, 23: 51-56.

Lunedo, R., & Pedroso, A.A. (2017). Microbiota intestinal. In: Macari, M., & Maiorka, A. Fisiologia das aves comerciais. (Cap. 29) Jaboticabal-SP: Funep/Fapesp/Facta.

Mahmood, T., & Guo, Y. (2020). Dietary fiber and chicken microbiome interaction: Where will it lead to?. Animal Nutrition, 6:1-8.

Maiorka, A., Dahlke, F., & Morgulis, M.S.F.A. (2006). Broiler adaptation to post-hatching period. Ciência Rural, 36(2):701-708.

Menezes, L.D.M., Lima, A.L., Pena, E.C., Silva, G.R., Klein, R.W.T., Silva, C.A., Assis, D.C.S., Figueiredo, T.C., Cançado, S.V. (2018). Caracterização microbiológica de carcaças de frangos de corte produzidas no estado de Minas Gerais. Arq. Bras. Med. Vet. Zootec., 70 (2): 623-627.

Oakley, B.B., Buhr, R.J., Ritz, C.W., Kiepper, B.H., Berrang, M.E., Seal, B.S., & Cox, N.A. (2014). Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives. Veterinary Research, 10: 282.

Oakley, B.B., Lillehoj, H.S., Kogut, M.H., Kim, W.K., Maurer, J.J., Pedroso, A., Lee, M.D., Collett, S.R., Johnson, T.J., & Cox, N.A. (2014a). The chicken gastrointestinal microbiome. FEMS Microbiology Letters, 360: 100-112.

Ocejo, M., Oporto, B., & Hurtado, A. (2017). 16S rRNA amplicon sequencing characterization of caecal microbiome composition of broilers and free-range slow-growing chickens throughout their productive lifespan. Scientific Reports, 9:2506.

Oliveira, A.V.B., Silva, R.A., Araújo, A.S. Brandão, P.A., Costa, F.B. (2011a). Padrões microbiológicos da carne de frango de corte – referencial teórico. Rev. Verde, 6: 1-16.

Oliveira, E.B., Deminicis, R.G.S., Lima, M.R., Costa, F.G.P., Nascimento, D.S., & Ribeiro, T. S. (2017b). Impact of intestinal health at poultry. Open Access Journal of Science, (1):5, 136-137.

Oviedo-Rondón, E.O., & Hume, M.E. (2013). Equilibrium in the gut ecosystem for productive healthy birds. In: Proceedings of the Arkansas Nutrition Conference. Rogers, AR, USA (pp. 1-18).

Oviedo-Rondón, E.O. (2009). Molecular methods to evaluate effects of feed additives and nutrientes in poultry gut microflora. Revista Brasileira de Zootecnia, 38: 209-225.

Pan, D., & Yu, Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5: 1, 108-119.

Pandit, R.J., Hinsu, A.T., Patel, N.V., Koringa, P.G., Jakhesara, S.J., Thakkar, J.R., Shah, T.M., Limon, G., Psifidi, A., Guitian, J., Hume, D.A., Tomley, F.M., Rank, D.N., Raman, M., Tirumurugaan, K.G., Blake, D.P., & Joshi, C.G. (2018). Microbial diversity and community composition of caecal microbiota in commercial and indigenous Indian chickens determined using 16s rDNA amplicon sequencing. Microbiome, 6(1): 115.

Park S.H., Hanning I., Perrota A., Bench B.J., Alm E., & Ricke S.C. (2013). Modifying the gastrointestinal ecology in alternatively raised poultry and the potential for molecular and metabolomic assessment. Poultry Science, 92(2):546-561.

Pickler, L., Santin, E., & Silva, A.V.S. (2011). Alternativas aos antibióticos para equilibrar a microbiota gastrointestinal de frangos. Archives of Veterinary Science, 16(3): 1-13.

Prodanov, C.C., & Freitas, E.C. (2013). Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico. (2.ed., 276p.) Novo Hamburgo-RS: Feevale.

Rehman, H.U., Vahjen, W., Awad W.A., & Zentek, J. 2007. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of Animal Nutrition, 61: 319-35.

Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLOS Biology, e1002533: 1-14.

Shang, Y., Kumar, S., Oakley, B. & Kim, W.K. (2018). Chicken gut microbiota: importance and detection technology. Frontiers in Veterinary Science, 5: 254.

Sousa, D.C., Oliveira, N.L.A., Santos, E.T., Guzzi, A., Dourado, L.R.B., & Ferreira, G.J.B.C. 2015. Caracterização morfológica do trato gastrointestinal de frangos de corte da linhagem Cobb 500®. Pesquisa Veterinária Brasileira, 35(1), 61-68.

Stanley, D., Hughes, R.J., & Moore, R.J. (2014). Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Applied Microbiology Biotechnology, 98: 4301-4310.

Sun, J., Wang, Y., Li, N., Zhong, H., Xu, H., Zhu, Q., & Liu, Y. 2018. Comparative analysis of the gut microbial composition and meat flavor of two chicken breeds in different rearing patterns. BioMed Research International, 4343196: 1-13.

Tellez, G., & Higgins, S.E., Donoghue, A.M., & Hargis, B.M. (2006). Digestive physiology and the role of microorganisms. Journal of Applied Poultry Research, 15(1): 136-144.

Waite, D.W., & Taylor, M. (2015). Exploring the avian gut microbiota: current trends and future directions. Frontiers in Microbiology, 6: 673.

Wang, Q., Garrity, G.M., Tiedje, J.M., & Cole, J.R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied Environmental Microbiology, 73(16): 5261-7.

Wei, S., Morrison, M., & Yu, Z. (2013). Bacterial census of poultry intestinal microbiome. Poultry Science, 92 (3), 671-683.

Witzig, M., Camarinha-Silva, A., Green-Engert, R., Hoelzle, K., Zeller, E., Seifert, J., Hoelzle, L.E., & Rodehutscord, M. (2015). Spatial variation of the gut microbiota in broiler chickens as affected by dietary available phosphorus and assessed by T-RFLP analysis and 454 pyrosequencing. Plos One, 10(12): e0145588.

Xiao, Y., Xiang, Y., Zhou, W., Chen, J., Li, K., & Yang, H. (2017). Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 96: 1387-1393.

Yadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 10(2): 1-11.

Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F.O., Ludwig, W., & Schleifer, K.H. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9): 635-645.

Yeoman, C.J., Chia, N., Jeraldo, P., Sipos, M., Goldenfeld, N.D., & White, B.A. (2012). The microbiome of the chicken gastrointestinal tract. Animal Health Research Reviews, 13(1): 89-99.

Zambello, A.V., Soares, A.G., Tauil, C.E., Donzelli, C.A., Fontana, F., & Chotolli, W. P. (2018). Metodologia da pesquisa e do trabalho científico. (1.ed., 94p.). Organizador: Thiago Mazucato. Penápolis-SP: FUNEPE.

Zhou, X., Jiang, X., Yang, C., Ma, B., Lei, C., Xu, C., Zhang, A., Yang, X., Xiong, Q., Zhang, P., Men, S., Xiang, R., & Wang, H. (2016). Cecal microbiota of Tibetan chickens from five geographic regions were determined by 16S rRNA sequencing. Microbiology Open, 5(5): 753-762.

Published

27/04/2020

How to Cite

CHRISTOFOLI, M.; SOUZA, C. S.; COSTA, T. F.; ALEXANDRINO, S. L. de S. A.; FARIA, P. P. de; MINAFRA-REZENDE, C. S.; SANTOS, F. R. dos; MINAFRA, C. S.; PEREIRA, P. S. Beneficial and harmful intestinal microbiota in poultry farming: Review. Research, Society and Development, [S. l.], v. 9, n. 7, p. e43973667, 2020. DOI: 10.33448/rsd-v9i7.3667. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3667. Acesso em: 15 jan. 2025.

Issue

Section

Review Article