Microbiota intestinal beneficiosa y dañina en la producción avícola: Revisión
DOI:
https://doi.org/10.33448/rsd-v9i7.3667Palabras clave:
Disbiosis; Enteritis; Integridad intestinal; Microbioma; Patógenos.Resumen
Actualmente, la disbiosis, la ruptura de la barrera intestinal y la inflamación se han convertido en preocupaciones de las aves de corral industriales, ya que culminan en el deterioro fisiológico y productivo de las aves. El objetivo fue discutir el papel de la microbiota intestinal de las aves en el desarrollo animal, así como destacar los beneficios y / o pérdidas causados por estos microorganismos. La metodología adoptada fue un estudio descriptivo, con una revisión bibliográfica de artículos científicos publicados en diferentes bases indexadas, con un marco temporal de las últimas décadas. Se descubrió que el uso de la secuenciación del gen ribosómico de ARN (ARNr) 16S es una herramienta importante para identificar y enumerar las bacterias intestinales presentes en las aves de producción. En cuanto a la composición de la microbiota, en el intestino delgado hay principalmente Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, Bacterioides, Clostridium, Fusobacterium y coliformes. En el intestino grueso, Lactobacillus, Bacterioides, Proteobacteria, Bacillus, Clostridium y Bifidobacterium. En el intestino delgado, las bacterias participar en el metabolismo mejorando la absorción de nutrientes, hidrolizan los polisacáridos para producir ácidos grasos de cadena corta, que serán absorbidos y participarán en importantes vías metabólicas en el suministro de carbono y fuentes de energía para las aves. A pesar de los beneficios de la microbiota para promover un ambiente intestinal estable, en situaciones desfavorables, como la reproducción inadecuada, puede actuar como patógenos, producir metabolitos tóxicos y afectar el rendimiento productivo de las aves.
Citas
Adedokun, S.A., & Olojede, O.C. (2019). Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Frontiers in Veterinary Science, 5(348): 1-11.
Apajalahti, J. & Vienola, K. (2016). Interaction between chicken intestinal microbiota and protein digestion. Animal Feed Science and Technology, 221:323-330.
Arnold, M.E., Martelli, F., Mclaren, I., & Davies, R.H. 2014. Estimation of the Rate of Egg Contamination from Salmonella-Infected Chickens. Zoonoses and Public Health, 61(1), 18-27.
Ballou A.L., Ali R.A., Mendoza M.A., Ellis J.C., Hassan H.M., Croom W.J., & Koci, M.D. (2016). Development of the chick microbiome: how early exposure influences future microbial diversity. Frontiers in Veterinary Science. 3:1-12.
Best, A.A., Porter, A.L., Fraley, S.M., & Fraley, G.S. (2017). Characterization of gut microbiome dynamics in developing Pekin ducks and impact of management system. Frontiers in Microbiology, 4:125.
Biasato, I., Ferrocino, I., Grego, E., Dabbou, S., Gai, F., Gasco, L., Cocolin, L., Capucchio, M..T. & Schiavone, A. (2019). Gut microbiota and mucin composition in female broiler chickens fed diets including yellow mealworm (Tenebrio molitor, L.). Animals, 9(5), 213:1-15.
Biswas, A., & Kobayashi, K.S. (2013). Regulation of intestinal microbiota by the NLR protein family. International Immunology, 25: 207-214.
Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current perspectives of the chicken gastrointestinal tract and its microbiome. Computational and Structural Biotechnology Journal, 16:131-139.
Bortoluzzi, C., Vieira, B.S., Hofacre, C., & Applegate, T.J. (2019). Effect of different challenge models to induce necrotic enteritis on the growth performance and intestinal microbiota of broiler chickens. Poultry science, 98(7), 2800-2812.
Brandl, K., Kumar, V., & Eckmann, L. (2017). Gut-liver axis at the frontier of host-microbial interactions. American Journal of Physiology-Gastrointestinal and Liver Physiology, 312(5), G413-G419.
Brizio, A.P.D.R.; Marin, G.; Schittler, L.; Prentice, C. (2015). Visible contamination in broiler carcasses and its relation to the stages of evisceration in poultry slaughter. International Food Research Journal, 22(1): 59-63.
Burt, D.W. (2005). Chicken genome: Current status and future opportunities. Genome Research, 15: 1692-1698.
Carrasco, J.M.D, Casanova, N.A., & Miyakawa, M.E.F. (2019). Microbiota, gut health and chicken productivity: what is the connection?. Microorganisms, 7(374): 1-15.
Castellanos, L.R., Donado-Godoy, P., León, M., Clavijo, V., Arevalo, A., Bernal, J.F., Timmerman, A.J., Mevius, D.J., Wagenaar, J.A., & Hordijk, J. (2017). High heterogeneity of Escherichia coli sequence types harbouring ESBL/AmpC genes on IncI1 plasmids in the Colombian poultry chain. Plos One, 12(1), e0170777.
Celi, P., Verlhac, V., Pérez, C. E., Schmeisser J., & Kluenter A.M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250:9-31.
Centers for Disease Control and Prevention – CDC. (2018). FoodNet Fast Home Page. Disponível em: <https://www.cdc.gov/foodnet/foodnet-fast.html>.
Chaucheyras-Durand, F., & Durand, H. (2010). Probiotics in animal nutrition and health. Benef. Microbes, 1(1):3-9.
Clavijo, V.M., & Flórez, J.V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3): 1006-1021.
Crabb, H.K., Gilkerson, J.R.; Browning, G.F. (2019). Only the age of the chicken is contaminated by Salmonella enterica in eggs? Food Microbiology, 77, 1–9.
Dayou, S., Lin, B., Qian, Q., Shanshan, Z., Meimei, Y., Shining, G., Qiuhong, L., & Cui L. 2019. Impact of gut microbiota structure in heat-stressed broilers. Poultry Science, 98 (6): 2405-2413.
Denbow, D.M. (2014). Gastrointestinal anatomy and physiology. In: Scanes, C. (Ed.), Sturkie’s Avian Physiology. 6th ed., Academic Press, New York, 337-366.
DiAngelo, J.R., Bland, M., Bambina, S., Cherry, S., & Birnbaum, M. (2009). The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proceedings of the National Academy of Sciences, 106(49): 20853-20858.
Dibner, J.J., & Richards, J.D. (2005). Antibiotic growth promoters in agriculture: history and mode of action. Poultry Science, 84(4): 634-643.
Ding, J., Dai, R., Yang, L., He, C., Xu, K., Liu, S., Zhao, W., Xiao, L., Luo, L., Zhang, Y., & Meng, H. (2017). Inheritance and establishment of gut microbiota in chickens. Frontier in Microbiology, 8: 1967.
Ducatelle, R., Goossens, E., Meyer, F.D., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Veterinary Research, 49(43): 1-9.
Elnesr, S.S., Alagawany, M., Elwan, H.M., Fathi, M.A., & Farag, M.R. (2020). Effect of sodium butyrate on intestinal health of poultry – a Review. Annals of Animal Science, 20(1): 29-41.
Figueira, S.V., Mota, B.P., Leonídio, A.R.A., Nascimento, G.M., & Andrade, M.A. 2014. Microbiota intestinal das aves de produção. Enciclopédia Biosfera, 10(18), 2181-2208.
Gao, P., Hou, Q., Kwok, L.Y., Huo, D., Feng, S., & Heping, Z. (2017). Effect of feeding Lactobacillus plantarum P-8 on the faecal microbiota of broiler chickens exposed to lincomycin. Science Bulletin, 62(2): 105-113.
Golder, H.M., Geier, M.S., Forder, R.E.A., Hynd, P.I., & Hughes, R.J. (2011). Effects of necrotic enteritis challenge on intestinal micro-architecture and mucin profile. British Poultry Science, 52(4): 500-506.
Kogut, M.H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250: 32-40.
Kogut, M.H., & Oakley, B.B. (2016). Spatial and temporal changes in the broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression. Frontiers in Veterinary Science, 3:1-12.
Kumar, S., Chen, C., Indugu, N., Werlang, G.O., Singh, M., Kim, W.K., & Thippareddi, H. (2018). Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. Plos One, 13: e0192450.
Li, K., Bihan, M., Yooseph, S. & Methé, B.A. (2012). Analyses of the microbial diversity across the human microbiome. PLOS One, 7(6): e32118.
Loddi, M.M. (2001). Probióticos e prebióticos na nutrição de aves. Revista CFMV, 23: 51-56.
Lunedo, R., & Pedroso, A.A. (2017). Microbiota intestinal. In: Macari, M., & Maiorka, A. Fisiologia das aves comerciais. (Cap. 29) Jaboticabal-SP: Funep/Fapesp/Facta.
Mahmood, T., & Guo, Y. (2020). Dietary fiber and chicken microbiome interaction: Where will it lead to?. Animal Nutrition, 6:1-8.
Maiorka, A., Dahlke, F., & Morgulis, M.S.F.A. (2006). Broiler adaptation to post-hatching period. Ciência Rural, 36(2):701-708.
Menezes, L.D.M., Lima, A.L., Pena, E.C., Silva, G.R., Klein, R.W.T., Silva, C.A., Assis, D.C.S., Figueiredo, T.C., Cançado, S.V. (2018). Caracterização microbiológica de carcaças de frangos de corte produzidas no estado de Minas Gerais. Arq. Bras. Med. Vet. Zootec., 70 (2): 623-627.
Oakley, B.B., Buhr, R.J., Ritz, C.W., Kiepper, B.H., Berrang, M.E., Seal, B.S., & Cox, N.A. (2014). Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives. Veterinary Research, 10: 282.
Oakley, B.B., Lillehoj, H.S., Kogut, M.H., Kim, W.K., Maurer, J.J., Pedroso, A., Lee, M.D., Collett, S.R., Johnson, T.J., & Cox, N.A. (2014a). The chicken gastrointestinal microbiome. FEMS Microbiology Letters, 360: 100-112.
Ocejo, M., Oporto, B., & Hurtado, A. (2017). 16S rRNA amplicon sequencing characterization of caecal microbiome composition of broilers and free-range slow-growing chickens throughout their productive lifespan. Scientific Reports, 9:2506.
Oliveira, A.V.B., Silva, R.A., Araújo, A.S. Brandão, P.A., Costa, F.B. (2011a). Padrões microbiológicos da carne de frango de corte – referencial teórico. Rev. Verde, 6: 1-16.
Oliveira, E.B., Deminicis, R.G.S., Lima, M.R., Costa, F.G.P., Nascimento, D.S., & Ribeiro, T. S. (2017b). Impact of intestinal health at poultry. Open Access Journal of Science, (1):5, 136-137.
Oviedo-Rondón, E.O., & Hume, M.E. (2013). Equilibrium in the gut ecosystem for productive healthy birds. In: Proceedings of the Arkansas Nutrition Conference. Rogers, AR, USA (pp. 1-18).
Oviedo-Rondón, E.O. (2009). Molecular methods to evaluate effects of feed additives and nutrientes in poultry gut microflora. Revista Brasileira de Zootecnia, 38: 209-225.
Pan, D., & Yu, Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5: 1, 108-119.
Pandit, R.J., Hinsu, A.T., Patel, N.V., Koringa, P.G., Jakhesara, S.J., Thakkar, J.R., Shah, T.M., Limon, G., Psifidi, A., Guitian, J., Hume, D.A., Tomley, F.M., Rank, D.N., Raman, M., Tirumurugaan, K.G., Blake, D.P., & Joshi, C.G. (2018). Microbial diversity and community composition of caecal microbiota in commercial and indigenous Indian chickens determined using 16s rDNA amplicon sequencing. Microbiome, 6(1): 115.
Park S.H., Hanning I., Perrota A., Bench B.J., Alm E., & Ricke S.C. (2013). Modifying the gastrointestinal ecology in alternatively raised poultry and the potential for molecular and metabolomic assessment. Poultry Science, 92(2):546-561.
Pickler, L., Santin, E., & Silva, A.V.S. (2011). Alternativas aos antibióticos para equilibrar a microbiota gastrointestinal de frangos. Archives of Veterinary Science, 16(3): 1-13.
Prodanov, C.C., & Freitas, E.C. (2013). Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico. (2.ed., 276p.) Novo Hamburgo-RS: Feevale.
Rehman, H.U., Vahjen, W., Awad W.A., & Zentek, J. 2007. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of Animal Nutrition, 61: 319-35.
Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLOS Biology, e1002533: 1-14.
Shang, Y., Kumar, S., Oakley, B. & Kim, W.K. (2018). Chicken gut microbiota: importance and detection technology. Frontiers in Veterinary Science, 5: 254.
Sousa, D.C., Oliveira, N.L.A., Santos, E.T., Guzzi, A., Dourado, L.R.B., & Ferreira, G.J.B.C. 2015. Caracterização morfológica do trato gastrointestinal de frangos de corte da linhagem Cobb 500®. Pesquisa Veterinária Brasileira, 35(1), 61-68.
Stanley, D., Hughes, R.J., & Moore, R.J. (2014). Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Applied Microbiology Biotechnology, 98: 4301-4310.
Sun, J., Wang, Y., Li, N., Zhong, H., Xu, H., Zhu, Q., & Liu, Y. 2018. Comparative analysis of the gut microbial composition and meat flavor of two chicken breeds in different rearing patterns. BioMed Research International, 4343196: 1-13.
Tellez, G., & Higgins, S.E., Donoghue, A.M., & Hargis, B.M. (2006). Digestive physiology and the role of microorganisms. Journal of Applied Poultry Research, 15(1): 136-144.
Waite, D.W., & Taylor, M. (2015). Exploring the avian gut microbiota: current trends and future directions. Frontiers in Microbiology, 6: 673.
Wang, Q., Garrity, G.M., Tiedje, J.M., & Cole, J.R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied Environmental Microbiology, 73(16): 5261-7.
Wei, S., Morrison, M., & Yu, Z. (2013). Bacterial census of poultry intestinal microbiome. Poultry Science, 92 (3), 671-683.
Witzig, M., Camarinha-Silva, A., Green-Engert, R., Hoelzle, K., Zeller, E., Seifert, J., Hoelzle, L.E., & Rodehutscord, M. (2015). Spatial variation of the gut microbiota in broiler chickens as affected by dietary available phosphorus and assessed by T-RFLP analysis and 454 pyrosequencing. Plos One, 10(12): e0145588.
Xiao, Y., Xiang, Y., Zhou, W., Chen, J., Li, K., & Yang, H. (2017). Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 96: 1387-1393.
Yadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 10(2): 1-11.
Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F.O., Ludwig, W., & Schleifer, K.H. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9): 635-645.
Yeoman, C.J., Chia, N., Jeraldo, P., Sipos, M., Goldenfeld, N.D., & White, B.A. (2012). The microbiome of the chicken gastrointestinal tract. Animal Health Research Reviews, 13(1): 89-99.
Zambello, A.V., Soares, A.G., Tauil, C.E., Donzelli, C.A., Fontana, F., & Chotolli, W. P. (2018). Metodologia da pesquisa e do trabalho científico. (1.ed., 94p.). Organizador: Thiago Mazucato. Penápolis-SP: FUNEPE.
Zhou, X., Jiang, X., Yang, C., Ma, B., Lei, C., Xu, C., Zhang, A., Yang, X., Xiong, Q., Zhang, P., Men, S., Xiang, R., & Wang, H. (2016). Cecal microbiota of Tibetan chickens from five geographic regions were determined by 16S rRNA sequencing. Microbiology Open, 5(5): 753-762.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.