The price of natural gas for vehicles in the State of Mato Grosso do Sul and its relationship with Henry Hub and Brent prices evaluated by “Machine Learning” techniques




Energy; Price indexes; Fossil fuel; Transport; Mato Grosso do Sul


The transport sector is intense in the use of energy, most of which is still obtained through fossil fuels. In the context of global warming and the substitution of the energy matrix, natural gas is considered a transition source since it pollutes less than alternative sources and it has a readily usable technology. Thus, it is important to know its local price behavior in relation to the main energy indexes in the world. The objective of this work was to identify the correlation between the price of natural gas used for vehicles [VNG] in the State of Mato Grosso do Sul [MS] and the Henry Hub [HH] and Brent indices, and to develop predictive models for the phenomenon. For the analysis, the Pearson correlation coefficient and the multiple linear regression model were used, carried out in two stages, the first with the price of VNG in MS in BRL, and the second with the price of VNG in MS in US$. In the first analysis, there was a strong positive correlation between the price in BRL and the exchange rate. In the second analysis, after adjusting the price of VNG in MS in US$, there was a strong correlation between the price of VNG in MS and the Brent index.


Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. (2022). Série histórica do levantamento de preços. [Base de dados].

Banco Central do Brasil. (2022). Consultar séries (Série 3698 Taxa de câmbio – Livre – Dólar americano (venda) – Média do período – mensal). [Base de dados].

BBC. (17 de outubro, 2021). Gas price rises: Russia not withholding supplies, says ambassador to UK.

Bruce da Silva, T., Delgado, F. (2018). Transição energética: Califórnia Style. FGV Energia.

Companhia de Gás do Estado de Mato Grosso do Sul S.A. [MSGÁS] e Petróleo Brasileiro S.A. [Petrobras]. (2021). Contrato de Compra e Venda de Gás Natural na Modalidade Firme Inflexível – Vigência 2022-2025. Acessado em 04 de fevereiro de 2022, de

Diffenbaugh, N. & Burke, M. (2019). Global warming has increased global economic inequality. PNAS, 116(20), 9808-9813.

Empresa de Pesquisa Energética. (2022). Balanço energético nacional 2022: Ano base 2021. Ministério de Minas e Energia.

Fávero, L., Belfiore, P. (2017). Manual de análise de dados: estatística e modelagem multivariada com Excel, SPSS e Stata. Elsevier, Rio de Janeiro, RJ, Brasil.

Gaulin, N., Le Billon, P. (2020). Climate change and fossil fuel production cuts: assessing global supply-side constraints and policy implications. Climate Policy 20(8), 888-901.

Houghton, J. (2005). Global Warming. Reports on Progress in Physics, 68(6), 1343-1403.

IPCC. (2022). Impacts of 1.5°C Global Warming on Natural and Human Systems. In Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (pp. 175-312). Cambridge: Cambridge University Press. doi:10.1017/9781009157940.005

Johnsson, F., Kjärstad, J., & Rootzén, J. (2019). The threat to climate change mitigation posed by the abundance of fossil fuels. Climate Policy, 19(2), 258-274.

Leal, F., Rego, E., Celma, O. R. (2019). Natural gas regulation and policy in Brazil: Prospects for the market expansion and energy integration in Mercosul. Energy Policy, 128(2019), 817-829.

Lei n. 8.987 (1995). Diário Oficial da União, Brasília, 28 set 1998 (republicado). Seção 1, p. 3-5.

Leonard, M., Pisani-Ferry, J, Shapiro, J., Tagliapietra, S., Wolff, G. (2021). The Geopolitics of the European Green Deal. European Council on Foreign Relations.

Marques, A., Fuinhas, J., Pereira, D. (2018). Have fossil fuels been substituted by renewables? An empirical assessment for 10 European countries. Energy Policy, 116(2018), 257-265.

Messenger, S. (01 de novembro de 2021). COP26: Sense of hope needed on climate change - Drakeford. BBC.

Pereira, J.S, Gadda, T.M.C., Amancio, E.C., Urbanetz Júnior, J., Corrêa, J.N.; Silveira, T.C. An energy transition analysis for a public transit bus system. Theoretical and Empirical Researches in Urban Management, 16(3), 53–72.

SEEG. (2020). Análise das emissões brasileiras de gases de efeito estufa e suas implicações para as metas de clima do Brasil: 1970-2019. Observatório do Clima.

Solaymani, S. (2019). CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector. Energy, 168(1), 989-1001.

Szabo, J. (2022). Energy transition or transformation? Power and politics in the European natural gas industry´s transformismo. Energy Research & Social Science, 84(2022), 102391.

U.S. Energy Information Administration. (2022). Natural Gas. [Base de dados].

U.S. Energy Information Administration. (2022). Petroleum & Other Liquids. [Base de dados].

U.S. Energy Information Administration. (6 de maio, 2022). Units and calculators explained.

Yeh, S. (2007). An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles. Energy Policy, 35(2007), 5865-5875.



How to Cite

SILVA, T. A. e; SANTOS, F. L. dos. The price of natural gas for vehicles in the State of Mato Grosso do Sul and its relationship with Henry Hub and Brent prices evaluated by “Machine Learning” techniques. Research, Society and Development, [S. l.], v. 11, n. 15, p. e388111537406, 2022. DOI: 10.33448/rsd-v11i15.37406. Disponível em: Acesso em: 31 jan. 2023.



Exact and Earth Sciences