Biological effects of naringenin and naringin: a review of bioassays

Authors

DOI:

https://doi.org/10.33448/rsd-v12i3.39232

Keywords:

Naringenin; Naringin; Bioassays; Antibacterial activity.

Abstract

Currently, the search for natural antimicrobial compounds has increased and, taking into account the high rate of infection by antibiotic-resistant microorganisms, the search for new compounds that have an antimicrobial effect has been stimulated. Flavonoids fit into this group because of their strong biological and medicinal properties. Biological activity such as anti-inflammatory, antioxidant, antibacterial, anti-hepatotoxic, and anti-carcinogenic are reported to occur. The objective of the current study was to collect information on the in vitro antibacterial activity of the flavonoids naringenin and naringin and to demonstrate the biological effects of these substances against bacteria. This is a integrative review of the literature on scientific articles published between 2017 and 2022 that was done using the PUMED databases. Flavonoids may be able to inhibit bacterial growth through different mechanisms, such as changing membrane and wall permeability cell, inhibition of nucleic acid synthesis and also by synergistic activity with antibiotics. The development of new antimicrobial drugs is increasingly necessary, which makes flavonoids promising candidates. Therefore, it is believed in the potential of naringenin and naringin as candidate phytoconstituents for the development and innovation of new antibiotics.

References

Achika, J. I., Ayo, R. G., Oyewale, A. O., & Habila, J. D. (2020). Flavonoids with antibacterial and antioxidant potentials from the stem bark of Uapaca heudelotti. Heliyon, 6(2), e03381.

Alam, M. A., Subhan, N., Rahman, M. M., Uddin, S. J., Reza, H. M., & Sarker, S. D. (2014). Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Advances in Nutrition, 5(4), 404-417.

Al-Huqail, A. A., Behiry, S. I., Salem, M. Z., Ali, H. M., Siddiqui, M. H., & Salem, A. Z. (2019). Antifungal, antibacterial, and antioxidant activities of Acacia saligna (Labill.) HL Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules, 24(4), 700.

Arul, D., & Subramanian, P. (2013). Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biochemical and Biophysical Research Communications, 434(2), 203-209.

Belém, G. M., Cardoso Filho, O., da Fonseca, F. S. A., & Duarte, E. R. (2021). Plantas do cerrado com atividade antimicrobiana: uma revisão sistemática da literatura. Research, Society and Development, 10(16), e07101622753-e07101622753.

Cavia‐Saiz, M., Busto, M. D., Pilar‐Izquierdo, M. C., Ortega, N., Perez‐Mateos, M., & Muñiz, P. (2010). Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. Journal of the Science of Food and Agriculture, 90(7), 1238-1244.

Chu, L. L., Dhakal, D., Shin, H. J., Jung, H. J., Yamaguchi, T., & Sohng, J. K. (2018). Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities. Frontiers in microbiology, 9, 1671.

Clementi, N., Scagnolari, C., D’Amore, A., Palombi, F., Criscuolo, E., Frasca, F., & Filippini, A. (2021). Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacological research, 163, 105255.

Dej-Adisai, S., Parndaeng, K., Wattanapiromsakul, C., & Hwang, J. S. (2021). Three new isoprenylated flavones from artocarpus chama stem and their bioactivities. Molecules, 27(1), 3.

Ferreira-Santos, P., Badim, H., Salvador, Â. C., Silvestre, A. J., Santos, S. A., Rocha, S. M., & Botelho, C. M. (2021). Chemical characterization of Sambucus nigra L. flowers aqueous extract and its biological implications. Biomolecules, 11(8), 1222.

Galluzzo, P., Ascenzi, P., Bulzomi, P., & Marino, M. (2008). The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor α-palmitoylation. Endocrinology, 149(5), 2567-2575.

Hermenean, A., Ardelean, A., Stan, M., Herman, H., Mihali, C. V., Costache, M., & Dinischiotu, A. (2013). Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chemico-biological interactions, 205(2), 138-147.

Jackson Seukep, A., Zhang, Y. L., Xu, Y. B., & Guo, M. Q. (2020). In vitro antibacterial and antiproliferative potential of Echinops lanceolatus Mattf.(Asteraceae) and identification of potential bioactive compounds. Pharmaceuticals, 13(4), 59.

Kalbessa, A., Dekebo, A., Tesso, H., Abdo, T., Abdissa, N., & Melaku, Y. (2019). Chemical constituents of root barks of Gnidia involucrata and evaluation for antibacterial and antioxidant activities. Journal of tropical medicine, 2019.

Khan, M. K., & Dangles, O. (2014). A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis, 33(1), 85-104.

Koru, O., Toksoy, F., Acikel, C. H., Tunca, Y. M., Baysallar, M., Guclu, A. U., & Salih, B. (2007). In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens. Anaerobe, 13(3-4), 140-145.

Lyu, S. Y., Rhim, J. Y., & Park, W. B. (2005). Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Archives of pharmacal research, 28(11), 1293-1301.

Mandalari, G., Bennett, R. N., Bisignano, G., Trombetta, D., Saija, A., Faulds, C. B., & Narbad, A. (2007). Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of applied microbiology, 103(6), 2056-2064.

Marmitt, D. J., Rempel, C., Goettert, M. I., & do Couto e Silva, A. (2015). Plantas com potencial antibacteriano da relação nacional de plantas medicinais de interesse do sistema único de saúde: revisão sistemática. Revista de saúde pública de Santa Catarina, 8(2), 135-152.

Martinez, R. M., Pinho-Ribeiro, F. A., Steffen, V. S., Silva, T. C., Caviglione, C. V., Bottura, C., & Casagrande, R. (2016). Topical formulation containing naringenin: efficacy against ultraviolet B irradiation-induced skin inflammation and oxidative stress in mice. PLoS One, 11(1), e0146296.

Mo, S. F., Zhou, F., Lv, Y. Z., Hu, Q. H., Zhang, D. M., & Kong, L. D. (2007). Hypouricemic action of selected flavonoids in mice: structure–activity relationships. Biological and Pharmaceutical Bulletin, 30(8), 1551-1556.

Mota, F. S., Oliveira, H. A. D., & Souto, R. C. F. (2018). Perfil e prevalência de resistência aos antimicrobianos de bactérias Gram-negativas isoladas de pacientes de uma unidade de terapia intensiva. RBAC, 50(3), 270-277.

Mucsi, I., & Pragai, B. M. (1985). Inhibition of virus multiplication and alteration of cyclic AMP level in cell cultures by flavonoids. Experientia, 41(7), 930-931.

Nahmias, Y., Goldwasser, J., Casali, M., Van Poll, D., Wakita, T., Chung, R. T., & Yarmush, M. L. (2008). Apolipoprotein B–dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology, 47(5), 1437-1445.

Negm, W. A., El-Aasr, M., Kamer, A. A., & Elekhnawy, E. (2021). Investigation of the Antibacterial Activity and Efflux Pump Inhibitory Effect of Cycas thouarsii R. Br. Extract against Klebsiella pneumoniae Clinical Isolates. Pharmaceuticals, 14(8), 756.

Pawar, A., Jha, P., Chopra, M., Chaudhry, U., & Saluja, D. (2020). Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids. Scientific reports, 10(1), 1-12.

Pinho-Ribeiro, F. A., Zarpelon, A. C., Fattori, V., Manchope, M. F., Mizokami, S. S., Casagrande, R., & Verri Jr, W. A. (2016). Naringenin reduces inflammatory pain in mice. Neuropharmacology, 105, 508-519.

Prabu, S. M., Shagirtha, K., & Renugadevi, J. (2011). Naringenin in combination with vitamins C and E potentially protects oxidative stress-mediated hepatic injury in cadmium-intoxicated rats. Journal of nutritional science and vitaminology, 57(2), 177-185.

Rauha, J. P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., & Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International journal of food microbiology, 56(1), 3-12.

Salem, M. Z., Ali, H. M., & Akrami, M. (2021). Moringa oleifera seeds-removed ripened pods as alternative for papersheet production: Antimicrobial activity and their phytoconstituents profile using HPLC. Scientific Reports, 11(1), 1-13.

SMB. (2017). Sociedade Brasileira de Microbiologia. A ameaça das super Bactérias. Rev Microb In Foco.,8(31):11-6.

De Sousa, L. M. M., et al. A metodologia de revisão integrativa da literatura em enfermagem. Nº21 Série 2-Novembro 2017, v. 17, 2017.

Spencer, J. P., & Crozier, A. (2012). Flavonoids and related compounds. Bioavaialability and function. oxidative stress and disease, 30.

Sudheer Kumar, M., Unnikrishnan, M. K., Patra, S., Murthy, K., & Srinivasan, K. K. (2003). Naringin and naringenin inhibit nitrite-induced methemoglobin formation. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 58(8), 564-566.

Tapas, A. R., Sakarkar, D. M., & Kakde, R. B. (2008). A review of flavonoids as nutraceuticals. Trop J Pharm Res, 7, 1089-1099.

Tavares, T. D., Antunes, J. C., Padrão, J., Ribeiro, A. I., Zille, A., Amorim, M. T. P., & Felgueiras, H. P. (2020). Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics, 9(6), 314.

Trung, H. T., Huynh, H. T. T., Thuy, L. N. T., Van Minh, H. N., Nguyen, M. N. T., & Thi, M. N. L. (2020). Growth-inhibiting, bactericidal, antibiofilm, and urease inhibitory activities of Hibiscus rosa sinensis L. flower constituents toward antibiotic sensitive-and resistant-strains of Helicobacter pylori. ACS omega, 5(32), 20080.

Uzel, A., Önçağ, Ö., Çoğulu, D., & Gençay, Ö. (2005). Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiological research, 160(2), 189-195.

Wang, N., Li, D., Lu, N. H., Yi, L., Huang, X. W., & Gao, Z. H. (2010). Peroxynitrite and hemoglobin-mediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids. Journal of Asian natural products research, 12(4), 257-264.

Wen, Q. H., Wang, R., Zhao, S. Q., Chen, B. R., & Zeng, X. A. (2021). Inhibition of Biofilm Formation of Foodborne Staphylococcus aureus by the Citrus Flavonoid Naringenin. Foods, 10(11), 2614.

Wilcox, L. J., Borradaile, N. M., & Huff, M. W. (1999). Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovascular drug reviews, 17(2), 160-178.

World Health Organization (2017). Global priority list of antibioticresistant bacteria to guide research, discovery, and development of new antibiotics; 2017:1-7.

Zeng, W., Jin, L., Zhang, F., Zhang, C., & Liang, W. (2018). Naringenin as a potential immunomodulator in therapeutics. Pharmacological research, 135, 122-126.

Zengin, G., Menghini, L., Di Sotto, A., Mancinelli, R., Sisto, F., Carradori, S., & Grande, R. (2018). Chromatographic analyses, in vitro biological activities, and cytotoxicity of Cannabis sativa L. essential oil: A multidisciplinary.

Downloads

Published

06/03/2023

How to Cite

NEPOMUCENO, F. C. L. .; DINIZ, M. de F. F. M. .; BARBOSA FILHO, J. M. .; LIMA, Z. N. .; BARBOSA , F. P. T. .; NUNES, M. K. dos S. .; PESSÔA, H. de L. F. Biological effects of naringenin and naringin: a review of bioassays . Research, Society and Development, [S. l.], v. 12, n. 3, p. e17112339232, 2023. DOI: 10.33448/rsd-v12i3.39232. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39232. Acesso em: 14 nov. 2024.

Issue

Section

Review Article