Efeitos biológicos da naringenina e naringina: uma revisão de bioensaios

Autores

DOI:

https://doi.org/10.33448/rsd-v12i3.39232

Palavras-chave:

Naringenina; Naringina; Atividade antibacteriana.

Resumo

Atualmente, a busca por compostos antimicrobianos naturais tem aumentado e, tendo em vista o alto índice de infecção por microrganismos resistentes a antibióticos, tem sido estimulada a busca por novos compostos que tenham efeito antimicrobiano. Os flavonoides se enquadram neste grupo devido às suas fortes propriedades biológicas e medicinais. Atividade biológica como anti-inflamatória, antioxidante, antibacteriana, anti-hepatotóxica e anticancerígena é relatada. O objetivo do presente estudo foi coletar informações sobre a atividade antibacteriana in vitro dos flavonoides naringenina e naringina e demonstrar os efeitos biológicos dessas substâncias contra bactérias. Esta é uma revisão integrativa da literatura sobre artigos científicos publicados entre 2017 e 2022 que foi feita usando as bases de dados PUMED. Os flavonoides podem ser capazes de inibir o crescimento bacteriano por meio de diferentes mecanismos, como alteração da permeabilidade da membrana e da parede celular, inibição da síntese de ácidos nucléicos e também por atividade sinérgica com antibióticos. O desenvolvimento de novos fármacos antimicrobianos é cada vez mais necessário, o que torna os flavonoides candidatos promissores. Portanto, acredita-se no potencial da naringenina e naringina como fitoconstituintes candidatos ao desenvolvimento e inovação de novos antibióticos.

Referências

Achika, J. I., Ayo, R. G., Oyewale, A. O., & Habila, J. D. (2020). Flavonoids with antibacterial and antioxidant potentials from the stem bark of Uapaca heudelotti. Heliyon, 6(2), e03381.

Alam, M. A., Subhan, N., Rahman, M. M., Uddin, S. J., Reza, H. M., & Sarker, S. D. (2014). Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Advances in Nutrition, 5(4), 404-417.

Al-Huqail, A. A., Behiry, S. I., Salem, M. Z., Ali, H. M., Siddiqui, M. H., & Salem, A. Z. (2019). Antifungal, antibacterial, and antioxidant activities of Acacia saligna (Labill.) HL Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules, 24(4), 700.

Arul, D., & Subramanian, P. (2013). Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biochemical and Biophysical Research Communications, 434(2), 203-209.

Belém, G. M., Cardoso Filho, O., da Fonseca, F. S. A., & Duarte, E. R. (2021). Plantas do cerrado com atividade antimicrobiana: uma revisão sistemática da literatura. Research, Society and Development, 10(16), e07101622753-e07101622753.

Cavia‐Saiz, M., Busto, M. D., Pilar‐Izquierdo, M. C., Ortega, N., Perez‐Mateos, M., & Muñiz, P. (2010). Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. Journal of the Science of Food and Agriculture, 90(7), 1238-1244.

Chu, L. L., Dhakal, D., Shin, H. J., Jung, H. J., Yamaguchi, T., & Sohng, J. K. (2018). Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities. Frontiers in microbiology, 9, 1671.

Clementi, N., Scagnolari, C., D’Amore, A., Palombi, F., Criscuolo, E., Frasca, F., & Filippini, A. (2021). Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacological research, 163, 105255.

Dej-Adisai, S., Parndaeng, K., Wattanapiromsakul, C., & Hwang, J. S. (2021). Three new isoprenylated flavones from artocarpus chama stem and their bioactivities. Molecules, 27(1), 3.

Ferreira-Santos, P., Badim, H., Salvador, Â. C., Silvestre, A. J., Santos, S. A., Rocha, S. M., & Botelho, C. M. (2021). Chemical characterization of Sambucus nigra L. flowers aqueous extract and its biological implications. Biomolecules, 11(8), 1222.

Galluzzo, P., Ascenzi, P., Bulzomi, P., & Marino, M. (2008). The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor α-palmitoylation. Endocrinology, 149(5), 2567-2575.

Hermenean, A., Ardelean, A., Stan, M., Herman, H., Mihali, C. V., Costache, M., & Dinischiotu, A. (2013). Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chemico-biological interactions, 205(2), 138-147.

Jackson Seukep, A., Zhang, Y. L., Xu, Y. B., & Guo, M. Q. (2020). In vitro antibacterial and antiproliferative potential of Echinops lanceolatus Mattf.(Asteraceae) and identification of potential bioactive compounds. Pharmaceuticals, 13(4), 59.

Kalbessa, A., Dekebo, A., Tesso, H., Abdo, T., Abdissa, N., & Melaku, Y. (2019). Chemical constituents of root barks of Gnidia involucrata and evaluation for antibacterial and antioxidant activities. Journal of tropical medicine, 2019.

Khan, M. K., & Dangles, O. (2014). A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis, 33(1), 85-104.

Koru, O., Toksoy, F., Acikel, C. H., Tunca, Y. M., Baysallar, M., Guclu, A. U., & Salih, B. (2007). In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens. Anaerobe, 13(3-4), 140-145.

Lyu, S. Y., Rhim, J. Y., & Park, W. B. (2005). Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Archives of pharmacal research, 28(11), 1293-1301.

Mandalari, G., Bennett, R. N., Bisignano, G., Trombetta, D., Saija, A., Faulds, C. B., & Narbad, A. (2007). Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of applied microbiology, 103(6), 2056-2064.

Marmitt, D. J., Rempel, C., Goettert, M. I., & do Couto e Silva, A. (2015). Plantas com potencial antibacteriano da relação nacional de plantas medicinais de interesse do sistema único de saúde: revisão sistemática. Revista de saúde pública de Santa Catarina, 8(2), 135-152.

Martinez, R. M., Pinho-Ribeiro, F. A., Steffen, V. S., Silva, T. C., Caviglione, C. V., Bottura, C., & Casagrande, R. (2016). Topical formulation containing naringenin: efficacy against ultraviolet B irradiation-induced skin inflammation and oxidative stress in mice. PLoS One, 11(1), e0146296.

Mo, S. F., Zhou, F., Lv, Y. Z., Hu, Q. H., Zhang, D. M., & Kong, L. D. (2007). Hypouricemic action of selected flavonoids in mice: structure–activity relationships. Biological and Pharmaceutical Bulletin, 30(8), 1551-1556.

Mota, F. S., Oliveira, H. A. D., & Souto, R. C. F. (2018). Perfil e prevalência de resistência aos antimicrobianos de bactérias Gram-negativas isoladas de pacientes de uma unidade de terapia intensiva. RBAC, 50(3), 270-277.

Mucsi, I., & Pragai, B. M. (1985). Inhibition of virus multiplication and alteration of cyclic AMP level in cell cultures by flavonoids. Experientia, 41(7), 930-931.

Nahmias, Y., Goldwasser, J., Casali, M., Van Poll, D., Wakita, T., Chung, R. T., & Yarmush, M. L. (2008). Apolipoprotein B–dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology, 47(5), 1437-1445.

Negm, W. A., El-Aasr, M., Kamer, A. A., & Elekhnawy, E. (2021). Investigation of the Antibacterial Activity and Efflux Pump Inhibitory Effect of Cycas thouarsii R. Br. Extract against Klebsiella pneumoniae Clinical Isolates. Pharmaceuticals, 14(8), 756.

Pawar, A., Jha, P., Chopra, M., Chaudhry, U., & Saluja, D. (2020). Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids. Scientific reports, 10(1), 1-12.

Pinho-Ribeiro, F. A., Zarpelon, A. C., Fattori, V., Manchope, M. F., Mizokami, S. S., Casagrande, R., & Verri Jr, W. A. (2016). Naringenin reduces inflammatory pain in mice. Neuropharmacology, 105, 508-519.

Prabu, S. M., Shagirtha, K., & Renugadevi, J. (2011). Naringenin in combination with vitamins C and E potentially protects oxidative stress-mediated hepatic injury in cadmium-intoxicated rats. Journal of nutritional science and vitaminology, 57(2), 177-185.

Rauha, J. P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., & Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International journal of food microbiology, 56(1), 3-12.

Salem, M. Z., Ali, H. M., & Akrami, M. (2021). Moringa oleifera seeds-removed ripened pods as alternative for papersheet production: Antimicrobial activity and their phytoconstituents profile using HPLC. Scientific Reports, 11(1), 1-13.

SMB. (2017). Sociedade Brasileira de Microbiologia. A ameaça das super Bactérias. Rev Microb In Foco.,8(31):11-6.

De Sousa, L. M. M., et al. A metodologia de revisão integrativa da literatura em enfermagem. Nº21 Série 2-Novembro 2017, v. 17, 2017.

Spencer, J. P., & Crozier, A. (2012). Flavonoids and related compounds. Bioavaialability and function. oxidative stress and disease, 30.

Sudheer Kumar, M., Unnikrishnan, M. K., Patra, S., Murthy, K., & Srinivasan, K. K. (2003). Naringin and naringenin inhibit nitrite-induced methemoglobin formation. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 58(8), 564-566.

Tapas, A. R., Sakarkar, D. M., & Kakde, R. B. (2008). A review of flavonoids as nutraceuticals. Trop J Pharm Res, 7, 1089-1099.

Tavares, T. D., Antunes, J. C., Padrão, J., Ribeiro, A. I., Zille, A., Amorim, M. T. P., & Felgueiras, H. P. (2020). Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics, 9(6), 314.

Trung, H. T., Huynh, H. T. T., Thuy, L. N. T., Van Minh, H. N., Nguyen, M. N. T., & Thi, M. N. L. (2020). Growth-inhibiting, bactericidal, antibiofilm, and urease inhibitory activities of Hibiscus rosa sinensis L. flower constituents toward antibiotic sensitive-and resistant-strains of Helicobacter pylori. ACS omega, 5(32), 20080.

Uzel, A., Önçağ, Ö., Çoğulu, D., & Gençay, Ö. (2005). Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiological research, 160(2), 189-195.

Wang, N., Li, D., Lu, N. H., Yi, L., Huang, X. W., & Gao, Z. H. (2010). Peroxynitrite and hemoglobin-mediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids. Journal of Asian natural products research, 12(4), 257-264.

Wen, Q. H., Wang, R., Zhao, S. Q., Chen, B. R., & Zeng, X. A. (2021). Inhibition of Biofilm Formation of Foodborne Staphylococcus aureus by the Citrus Flavonoid Naringenin. Foods, 10(11), 2614.

Wilcox, L. J., Borradaile, N. M., & Huff, M. W. (1999). Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovascular drug reviews, 17(2), 160-178.

World Health Organization (2017). Global priority list of antibioticresistant bacteria to guide research, discovery, and development of new antibiotics; 2017:1-7.

Zeng, W., Jin, L., Zhang, F., Zhang, C., & Liang, W. (2018). Naringenin as a potential immunomodulator in therapeutics. Pharmacological research, 135, 122-126.

Zengin, G., Menghini, L., Di Sotto, A., Mancinelli, R., Sisto, F., Carradori, S., & Grande, R. (2018). Chromatographic analyses, in vitro biological activities, and cytotoxicity of Cannabis sativa L. essential oil: A multidisciplinary.

Downloads

Publicado

06/03/2023

Como Citar

NEPOMUCENO, F. C. L. .; DINIZ, M. de F. F. M. .; BARBOSA FILHO, J. M. .; LIMA, Z. N. .; BARBOSA , F. P. T. .; NUNES, M. K. dos S. .; PESSÔA, H. de L. F. Efeitos biológicos da naringenina e naringina: uma revisão de bioensaios. Research, Society and Development, [S. l.], v. 12, n. 3, p. e17112339232, 2023. DOI: 10.33448/rsd-v12i3.39232. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39232. Acesso em: 30 jun. 2024.

Edição

Seção

Artigos de Revisão