Efectos biológicos de la naringenina y la naringina: una revisión de los bioensayos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i3.39232

Palabras clave:

Naringenina; Naringina; Bioensayos; Actividad antibacterial.

Resumen

Actualmente, la búsqueda de compuestos antimicrobianos naturales se ha incrementado y, teniendo en cuenta la alta tasa de infección por microorganismos resistentes a los antibióticos, se ha estimulado la búsqueda de nuevos compuestos que tengan efecto antimicrobiano. Los flavonoides encajan en este grupo debido a sus fuertes propiedades biológicas y medicinales. Se informa que se produce actividad biológica como antiinflamatoria, antioxidante, antibacteriana, antihepatotóxica y anticancerígena. El objetivo del presente estudio fue recopilar información sobre la actividad antibacteriana in vitro de los flavonoides naringenina y naringina y demostrar los efectos biológicos de estas sustancias contra las bacterias. Esta es una revision integradora de la literatura sobre artículos científicos publicados entre 2017 y 2022 que se realizó utilizando las bases de datos PUMED. Los flavonoides pueden inhibir el crecimiento bacteriano a través de diferentes mecanismos, como el cambio de la permeabilidad de la membrana y la pared celular, la inhibición de la síntesis de ácidos nucleicos y también por la actividad sinérgica con los antibióticos. El desarrollo de nuevos fármacos antimicrobianos es cada vez más necesario, lo que convierte a los flavonoides en candidatos prometedores. Por lo tanto, se cree en el potencial de la naringenina y la naringina como fitoconstituyentes candidatos para el desarrollo e innovación de nuevos antibióticos.

Citas

Achika, J. I., Ayo, R. G., Oyewale, A. O., & Habila, J. D. (2020). Flavonoids with antibacterial and antioxidant potentials from the stem bark of Uapaca heudelotti. Heliyon, 6(2), e03381.

Alam, M. A., Subhan, N., Rahman, M. M., Uddin, S. J., Reza, H. M., & Sarker, S. D. (2014). Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Advances in Nutrition, 5(4), 404-417.

Al-Huqail, A. A., Behiry, S. I., Salem, M. Z., Ali, H. M., Siddiqui, M. H., & Salem, A. Z. (2019). Antifungal, antibacterial, and antioxidant activities of Acacia saligna (Labill.) HL Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules, 24(4), 700.

Arul, D., & Subramanian, P. (2013). Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biochemical and Biophysical Research Communications, 434(2), 203-209.

Belém, G. M., Cardoso Filho, O., da Fonseca, F. S. A., & Duarte, E. R. (2021). Plantas do cerrado com atividade antimicrobiana: uma revisão sistemática da literatura. Research, Society and Development, 10(16), e07101622753-e07101622753.

Cavia‐Saiz, M., Busto, M. D., Pilar‐Izquierdo, M. C., Ortega, N., Perez‐Mateos, M., & Muñiz, P. (2010). Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. Journal of the Science of Food and Agriculture, 90(7), 1238-1244.

Chu, L. L., Dhakal, D., Shin, H. J., Jung, H. J., Yamaguchi, T., & Sohng, J. K. (2018). Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities. Frontiers in microbiology, 9, 1671.

Clementi, N., Scagnolari, C., D’Amore, A., Palombi, F., Criscuolo, E., Frasca, F., & Filippini, A. (2021). Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacological research, 163, 105255.

Dej-Adisai, S., Parndaeng, K., Wattanapiromsakul, C., & Hwang, J. S. (2021). Three new isoprenylated flavones from artocarpus chama stem and their bioactivities. Molecules, 27(1), 3.

Ferreira-Santos, P., Badim, H., Salvador, Â. C., Silvestre, A. J., Santos, S. A., Rocha, S. M., & Botelho, C. M. (2021). Chemical characterization of Sambucus nigra L. flowers aqueous extract and its biological implications. Biomolecules, 11(8), 1222.

Galluzzo, P., Ascenzi, P., Bulzomi, P., & Marino, M. (2008). The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor α-palmitoylation. Endocrinology, 149(5), 2567-2575.

Hermenean, A., Ardelean, A., Stan, M., Herman, H., Mihali, C. V., Costache, M., & Dinischiotu, A. (2013). Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chemico-biological interactions, 205(2), 138-147.

Jackson Seukep, A., Zhang, Y. L., Xu, Y. B., & Guo, M. Q. (2020). In vitro antibacterial and antiproliferative potential of Echinops lanceolatus Mattf.(Asteraceae) and identification of potential bioactive compounds. Pharmaceuticals, 13(4), 59.

Kalbessa, A., Dekebo, A., Tesso, H., Abdo, T., Abdissa, N., & Melaku, Y. (2019). Chemical constituents of root barks of Gnidia involucrata and evaluation for antibacterial and antioxidant activities. Journal of tropical medicine, 2019.

Khan, M. K., & Dangles, O. (2014). A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis, 33(1), 85-104.

Koru, O., Toksoy, F., Acikel, C. H., Tunca, Y. M., Baysallar, M., Guclu, A. U., & Salih, B. (2007). In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens. Anaerobe, 13(3-4), 140-145.

Lyu, S. Y., Rhim, J. Y., & Park, W. B. (2005). Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Archives of pharmacal research, 28(11), 1293-1301.

Mandalari, G., Bennett, R. N., Bisignano, G., Trombetta, D., Saija, A., Faulds, C. B., & Narbad, A. (2007). Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of applied microbiology, 103(6), 2056-2064.

Marmitt, D. J., Rempel, C., Goettert, M. I., & do Couto e Silva, A. (2015). Plantas com potencial antibacteriano da relação nacional de plantas medicinais de interesse do sistema único de saúde: revisão sistemática. Revista de saúde pública de Santa Catarina, 8(2), 135-152.

Martinez, R. M., Pinho-Ribeiro, F. A., Steffen, V. S., Silva, T. C., Caviglione, C. V., Bottura, C., & Casagrande, R. (2016). Topical formulation containing naringenin: efficacy against ultraviolet B irradiation-induced skin inflammation and oxidative stress in mice. PLoS One, 11(1), e0146296.

Mo, S. F., Zhou, F., Lv, Y. Z., Hu, Q. H., Zhang, D. M., & Kong, L. D. (2007). Hypouricemic action of selected flavonoids in mice: structure–activity relationships. Biological and Pharmaceutical Bulletin, 30(8), 1551-1556.

Mota, F. S., Oliveira, H. A. D., & Souto, R. C. F. (2018). Perfil e prevalência de resistência aos antimicrobianos de bactérias Gram-negativas isoladas de pacientes de uma unidade de terapia intensiva. RBAC, 50(3), 270-277.

Mucsi, I., & Pragai, B. M. (1985). Inhibition of virus multiplication and alteration of cyclic AMP level in cell cultures by flavonoids. Experientia, 41(7), 930-931.

Nahmias, Y., Goldwasser, J., Casali, M., Van Poll, D., Wakita, T., Chung, R. T., & Yarmush, M. L. (2008). Apolipoprotein B–dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology, 47(5), 1437-1445.

Negm, W. A., El-Aasr, M., Kamer, A. A., & Elekhnawy, E. (2021). Investigation of the Antibacterial Activity and Efflux Pump Inhibitory Effect of Cycas thouarsii R. Br. Extract against Klebsiella pneumoniae Clinical Isolates. Pharmaceuticals, 14(8), 756.

Pawar, A., Jha, P., Chopra, M., Chaudhry, U., & Saluja, D. (2020). Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids. Scientific reports, 10(1), 1-12.

Pinho-Ribeiro, F. A., Zarpelon, A. C., Fattori, V., Manchope, M. F., Mizokami, S. S., Casagrande, R., & Verri Jr, W. A. (2016). Naringenin reduces inflammatory pain in mice. Neuropharmacology, 105, 508-519.

Prabu, S. M., Shagirtha, K., & Renugadevi, J. (2011). Naringenin in combination with vitamins C and E potentially protects oxidative stress-mediated hepatic injury in cadmium-intoxicated rats. Journal of nutritional science and vitaminology, 57(2), 177-185.

Rauha, J. P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., & Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International journal of food microbiology, 56(1), 3-12.

Salem, M. Z., Ali, H. M., & Akrami, M. (2021). Moringa oleifera seeds-removed ripened pods as alternative for papersheet production: Antimicrobial activity and their phytoconstituents profile using HPLC. Scientific Reports, 11(1), 1-13.

SMB. (2017). Sociedade Brasileira de Microbiologia. A ameaça das super Bactérias. Rev Microb In Foco.,8(31):11-6.

De Sousa, L. M. M., et al. A metodologia de revisão integrativa da literatura em enfermagem. Nº21 Série 2-Novembro 2017, v. 17, 2017.

Spencer, J. P., & Crozier, A. (2012). Flavonoids and related compounds. Bioavaialability and function. oxidative stress and disease, 30.

Sudheer Kumar, M., Unnikrishnan, M. K., Patra, S., Murthy, K., & Srinivasan, K. K. (2003). Naringin and naringenin inhibit nitrite-induced methemoglobin formation. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 58(8), 564-566.

Tapas, A. R., Sakarkar, D. M., & Kakde, R. B. (2008). A review of flavonoids as nutraceuticals. Trop J Pharm Res, 7, 1089-1099.

Tavares, T. D., Antunes, J. C., Padrão, J., Ribeiro, A. I., Zille, A., Amorim, M. T. P., & Felgueiras, H. P. (2020). Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics, 9(6), 314.

Trung, H. T., Huynh, H. T. T., Thuy, L. N. T., Van Minh, H. N., Nguyen, M. N. T., & Thi, M. N. L. (2020). Growth-inhibiting, bactericidal, antibiofilm, and urease inhibitory activities of Hibiscus rosa sinensis L. flower constituents toward antibiotic sensitive-and resistant-strains of Helicobacter pylori. ACS omega, 5(32), 20080.

Uzel, A., Önçağ, Ö., Çoğulu, D., & Gençay, Ö. (2005). Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiological research, 160(2), 189-195.

Wang, N., Li, D., Lu, N. H., Yi, L., Huang, X. W., & Gao, Z. H. (2010). Peroxynitrite and hemoglobin-mediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids. Journal of Asian natural products research, 12(4), 257-264.

Wen, Q. H., Wang, R., Zhao, S. Q., Chen, B. R., & Zeng, X. A. (2021). Inhibition of Biofilm Formation of Foodborne Staphylococcus aureus by the Citrus Flavonoid Naringenin. Foods, 10(11), 2614.

Wilcox, L. J., Borradaile, N. M., & Huff, M. W. (1999). Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovascular drug reviews, 17(2), 160-178.

World Health Organization (2017). Global priority list of antibioticresistant bacteria to guide research, discovery, and development of new antibiotics; 2017:1-7.

Zeng, W., Jin, L., Zhang, F., Zhang, C., & Liang, W. (2018). Naringenin as a potential immunomodulator in therapeutics. Pharmacological research, 135, 122-126.

Zengin, G., Menghini, L., Di Sotto, A., Mancinelli, R., Sisto, F., Carradori, S., & Grande, R. (2018). Chromatographic analyses, in vitro biological activities, and cytotoxicity of Cannabis sativa L. essential oil: A multidisciplinary.

Descargas

Publicado

06/03/2023

Cómo citar

NEPOMUCENO, F. C. L. .; DINIZ, M. de F. F. M. .; BARBOSA FILHO, J. M. .; LIMA, Z. N. .; BARBOSA , F. P. T. .; NUNES, M. K. dos S. .; PESSÔA, H. de L. F. Efectos biológicos de la naringenina y la naringina: una revisión de los bioensayos. Research, Society and Development, [S. l.], v. 12, n. 3, p. e17112339232, 2023. DOI: 10.33448/rsd-v12i3.39232. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39232. Acesso em: 30 jun. 2024.

Número

Sección

Revisiones