Pharmacological prospection of cannabidiol analgesic action through molecular docking: interactions with voltage-gated sodium channel Nav1.7
DOI:
https://doi.org/10.33448/rsd-v12i3.40292Keywords:
Cannabidiol; Analgesic; Drug design; Voltage-gated sodium channel Nav1.7.Abstract
Objective: to analyze the interaction of cannabidiol (CBD) with Nav1.7 and compare it with carbamazepine (CBZ) through molecular docking. Methodology: a quantitative and experimental research, of the in silico type, which used CBD (CID: 644019) and CBZ (CID: 2554, standard drug blocker), anticonvulsant used in chronic pain, on the Nav1.7 channel (PDB: 6N4I), as target protein. Docking simulations were obtained using the Dockthor®, analyzed and visualized using UCSF Chimera®. The results of the CBD and CBZ simulations were arranged in order of highest affinity with the channel protein. The affinities scores were compared using the Student t-test in the GraphPad Prism®, where p values p < 0.05 were considered significant. Results: 1,000,000 evaluations of the possible interactions of CBD and CBZ with Nav1.7 were carried out, which the best three with the lowest binding energy (kcal/mol) were selected. The predicted binding affinity scores of Nav1.7 protein and CBD, and CBZ were - 8.61 ± 0.008 and - 8.47 ± 0.27, respectively. Comparing these values, it was noted that affinities did not difference significant (p = 0.31), which is reflected in the similar positions of each one in the channel and possible therapeutic potency. CBD is hydrogen bonded to THR180 residue with the distance of 1.86 Å. Conclusions: cannabidiol binds to Nav1.7, being able to block it. These data support the clinical use of cannabidiol as an analgesic through the neuronal inhibitory pathway.
References
Bankar, G., Goodchild, S. J., et al. (2018). Selective NaV1.7 Antagonists with Long Residence Time Show Improved Efficacy against Inflammatory and Neuropathic Pain. Cell Reports, 24(12), 3133–3145. https://doi.org/10.1016/j.celrep.2018.08.063
Carlini, E. A. (2006). A história da maconha no Brasil. Jornal Brasileiro de Psiquiatria, 55(4), 314-317.
Casey, S. L., Atwal, N., & Vaughan, C. W. (2017). Cannabis constituent synergy in a mouse neuropathic pain model. Pain, 158(12), 2452–2460. https://doi.org/10.1097/j.pain.0000000000001051
Catterall, W. A. (2012). Voltage-gated sodium channels at 60: structure, function and pathophysiology. The Journal of Physiology, 590(11), 2577-89. https://doi.org/10.1113/jphysiol.2011.224204
De Petrocellis, L., Ligresti, A., Moriello, A. S., Allarà, M., Bisogno, T., Petrosino, S., Stott, C. G., & Di Marzo, V. (2011). Effects of cannabinoids and cannabinoid-enriched cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. British Journal of Pharmacology, 163(7), 1479–1494. https://doi.org/10.1111/j.1476-5381.2010.01166.x
Devinsky, O., Cross, J. H., & Wright, S. (2017a). Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. The New England Journal of Medicine, 377(7), 699–700. https://doi.org/10.1056/NEJMc1708349
Devinsky, O., Cross, J. H., Laux, L., Marsh, E., Miller, I., Nabbout, R., Scheffer, I. E., Thiele, E. A., & Wright, S. (2017b). Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. The New England Journal of Medicine, 376(21), 2011–2020. https://doi.org/10.1056/NEJMoa1611618
Devinsky, O., Marsh, E., Friedman, D., Thiele, E., Laux, L., Sullivan, J., Miller, I., Flamini, R., Wilfong, A., Filloux, F., Wong, M., Tilton, N., Bruno, P., Bluvstein, J., Hedlund, J., Kamens, R., Maclean, J., Nangia, S., Singhal, N. S., Wilson, C. A., … Cilio, M. R. (2016). Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. The Lancet. Neurology, 15(3), 270–278. https://doi.org/10.1016/S1474-4422(15)00379-8
Dib-Hajj, S. D., Cummins, T. R., Black, J. A., & Waxman, S. G. (2007). From genes to pain: Na v 1.7 and human pain disorders. Trends in Neurosciences, 30(11), 555–563. https://doi.org/10.1016/j.tins.2007.08.004
Dib-Hajj, S. D., Cummins, T. R., Black, J. A., & Waxman, S. G. (2010). Sodium channels in normal and pathological pain. Annual Review of Neuroscience, 33, 325–347. https://doi.org/10.1146/annurev-neuro-060909-153234
Dravet, C. (2011). The core Dravet syndrome phenotype. Epilepsia 52:3–9.
Du, G., Qu, X., Hu, J., Zhang, Y., & Cai, Y. (2022). Identification of Taohong Siwu Decoction in Treating Chronic Glomerulonephritis Using Network Pharmacology and Molecular Docking. Natural Product Communications, 17(11), 1-12.
Eddy, C. M., Rickards, H. E., & Cavanna, A. E. (2011). The cognitive impact of antiepileptic drugs. Therapeutic Advances in Neurological Disorders, 4(6), 385–407. https://doi.org/10.1177/1756285611417920
Emery, E. C., Luiz, A. P., & Wood, J. N. (2016). Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opinion on Therapeutic targets, 20(8), 975–983. https://doi.org/10.1517/14728222.2016.1162295
Forsythe, I., Butler, R., Berg, I., & McGuire, R. (1991). Cognitive impairment in new cases of epilepsy randomly assigned to carbamazepine, phenytoin and sodium valproate. Developmental Medicine and Child Neurology, 33(6), 524–534. https://doi.org/10.1111/j.1469-8749.1991.tb14917.x
Ghovanloo, M. R., Choudhury, K., Bandaru, T. S., Fouda, M. A., Rayani, K., Rusinova, R., Phaterpekar, T., Nelkenbrecher, K., Watkins, A. R., Poburko, D., Thewalt, J., Andersen, O. S., Delemotte, L., Goodchild, S. J., & Ruben, P. C. (2021). Cannabidiol inhibits the skeletal muscle Nav1.4 by blocking its pore and by altering membrane elasticity. The Journal of General Physiology, 153(5), e202012701. https://doi.org/10.1085/jgp.202012701
Ghovanloo, M. R., Shuart, N. G., Mezeyova, J., Dean, R. A., Ruben, P. C., & Goodchild, S. J. (2018). Inhibitory effects of cannabidiol on voltage-dependent sodium currents. The Journal of Biological Chemistry, 293(43), 16546–16558. https://doi.org/10.1074/jbc.RA118.004929
Ghovanloo, M. R., & Ruben, P. C. (2020). Say Cheese: Structure of the Cardiac Electrical Engine Is Captured. Trends in Biochemical Sciences, 45(5), 369–371. https://doi.org/10.1016/j.tibs.2020.02.003
Hill, K. P. (2015). Medical Marijuana for Treatment of Chronic Pain and Other Medical and Psychiatric Problems: A Clinical Review. JAMA, 313(24), 2474–2483. https://doi.org/10.1001/jama.2015.6199
Hudson, R., & Puvanenthirarajah, N. (2018). Cannabis for pain management: Pariah or panacea? University of Western Ontario Medical Journal, 87(1), 58-61.
Kang, H. C., Eun, B. L., Wu Lee, C., Ku Moon, H., Kim, J. S., Wook Kim, D., Soo Lee, J., Young Chae, K., Ho Cha, B., Sook Suh, E., Chae Park, J., Lim, K., Hye Ha, E., Ho Song, D., Dong Kim, H., & Korean Pediatric Topiramate Study Group (2007). The effects on cognitive function and behavioral problems of topiramate compared to carbamazepine as monotherapy for children with benign rolandic epilepsy. Epilepsia, 48(9), 1716–1723. https://doi.org/10.1111/j.1528-1167.2007.01160.x
Magalhães, C. S., et al. (2014). A dynamic niching genetic algorithm strategy for docking of highly flexible ligands. Information Sciences, 289;206–24.
Patel, R. R., Barbosa, C., Brustovetsky, T., Brustovetsky, N., & Cummins, T. R. (2016). Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain, 139(8), 2164–81.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE.
http://repositorio.ufsm.br/handle/1/15824
PubChem. National Center for Biotechnology Information. Disponível em: https://pubchem.ncbi.nlm.nih.gov
Romero-Sandoval, E. A., Fincham, J. E., Kolano, A. L., Sharpe, B. N., & Alvarado-Vázquez, P. A. (2018). Cannabis for chronic pain: challenges and considerations. Pharmacotherapy 38:651–662.
Ross, H. R., Napier, I., & Connor, M. (2008). Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol. The Journal of Biological Chemistry, 283(23), 16124–16134. https://doi.org/10.1074/jbc.M707104200
Sait, L. G., Sula, A., Ghovanloo, M. R., Hollingworth, D., Ruben, P. C., & Wallace, B. A. (2020). Cannabidiol interactions with voltage-gated sodium channels. eLife, 9, e58593. https://doi.org/10.7554/eLife.58593
Shehata, G. A., Bateh, A.el-A., Hamed, S. A., Rageh, T. A., & Elsorogy, Y. B. (2009). Neuropsychological effects of antiepileptic drugs (carbamazepine versus valproate) in adult males with epilepsy. Neuropsychiatric Disease and Treatment, 5, 527–533. https://doi.org/10.2147/ndt.s5903
Skaper, S. D., & Di Marzo, V. (2012). Endocannabinoids in nervous system health and disease: the big picture in a nutshell. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1607), 3193–3200. https://doi.org/10.1098/rstb.2012.0313
Teixeira, L. R., Silva Júnior, J. J., Vieira, P. H. S., Canto, M. V. G., Figueirêdo, A. G. M., & Silva J. L. V. (2021). Tamoxifen inhibits the anion channel induced by Staphylococcus aureus α-hemolysin: electrophysiological and docking analysis. RSD [Internet], 10(2), e13010212326.
Vitale, R. M., Iannotti, F. A., & Amodeo, P. (2021). The (Poly)Pharmacology of Cannabidiol in Neurological and Neuropsychiatric Disorders: Molecular Mechanisms and Targets. International Journal of Molecular Sciences, 22(9), 4876. https://doi.org/10.3390/ijms22094876
Wesnes, K. A., Edgar, C., Dean, A. D., & Wroe, S. J. (2009). The cognitive and psychomotor effects of remacemide and carbamazepine in newly diagnosed epilepsy. Epilepsy & Behavior: E&B, 14(3), 522-528. https://doi.org/10.1016/j.yebeh.2008.11.012
Witt, J. A., & Helmstaedter, C. (2013). Monitoring the cognitive effects of antiepileptic pharmacotherapy--approaching the individual patient. Epilepsy & behavior: E&B, 26(3), 450–456. https://doi.org/10.1016/j.yebeh.2012.09.015
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gidelson José da Silva Júnior; Gisele Evelin de Jesus Arruda; Nayara Barbosa Dantas Lira; Neuton Barbosa Dantas Lira; Alessandra Emertice de Almeida Costa; Cintia Yoko Morioka; Joelmir Lucena Veiga da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.